
Computer Graphics & Simulation Group Department of Computer Science - University of Malta

1CGSG – Texturing, Sampling and Filtering

Texturing, Sampling and Filtering

Sandro Spina
Computer Graphics and Simulation Group

Computer Science Department
University of Malta

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

2CGSG – Texturing, Sampling and Filtering

Texturing …

 3D models can be made to look better in a number of

ways:

 Increasing the vertex count

 Improving the vertex positions

 Improving the illumination model used for lighting

 Making use of textures and leveraging visual perception

 3D models can be made to look better by applying a

texture across the polygons composing the model.

 This is the topic of this module. Based mostly on the

book Real-Time Rendering (Akenine Mueller)

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

3CGSG – Texturing, Sampling and Filtering

Texturing … an example

 Suppose we want to model a rubble wall

 We have three options

 3D model the different

stones then place them

individually one on top of

the other (very time

consuming …)

 Model the wall surface (this

is probably even more

complex … because you

need to model the spaces

between the stones as well)

 Wrap this image on a 2D

surface. (easiest and

cheapest)

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

4CGSG – Texturing, Sampling and Filtering

Generalised Texturing

 Texturing, at its simplest, is a technique for efficiently
modelling a surface’s properties.

 One can think of it as wrapping a wallpaper to a
surface.

 As seen in previous modules colour is computed by
taking into account the lighting and the material
together with the viewer’s position.

 Important: Texturing works by modifying the values
used in the lighting equation.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

5CGSG – Texturing, Sampling and Filtering

Change in lighting …

 Recall how the value of a single shaded pixel is calculated from

the lighting equation.

 It is computed by taking into account the lighting, the material

and the viewer’s position.

 Note - one can think of the texture as one of the properties of a

material.

 Texturing works by modifying the values used in the shading

equation at a particular location according to the corresponding

pixel values found in the texture image of the material.

 Texels: refers to the pixels in the image texture ...

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

6CGSG – Texturing, Sampling and Filtering

The brick wall example (multiple textures)

 Apart from the lack of geometry details (i.e. attaching
the texture to a flat surface) there might be other
components which can look unconvincing.

 For Example:

 The glossiness of the mortar might be different – the bricks
should probably be more matte than the mortar.

 Solution: Apply a secondary texture that changes the glossiness in
different parts of the surface

 When viewed closely bricks appear to be flat !!

 Solution: Apply bump mapping in order to give the impression that the
bricks are not perfectly smooth

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

7CGSG – Texturing, Sampling and Filtering

Image from pg148 RTR

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

8CGSG – Texturing, Sampling and Filtering

The Texturing Pipeline (4 phases)

 Texturing can be best described
using a generalised texturing
pipeline ...

 This pipeline will assign texel values
to the various location on our
geometry.

Projector

Function

Corresponder

Function(s)

Obtain

Value

Value

Transform

Function

Object Space Location

Parameter Space

Coordinates

Texture Space

Location Texture Value

Transformed

Texture

Value

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

9CGSG – Texturing, Sampling and Filtering

The Texturing Pipeline (4 phases) [i]

 The initial input to the pipeline is a location in space (x,y,z)

 This space can be either world space or object space

 Using the model’s frame of reference is better (and easier to
work with) ... You can think of the texture as moving along with
the model.

 Textures are 2D hence this input (point in space) needs to be
projected onto it. This is done by using a projector function
applied to it to obtain a set of values.

 These are called the parameter-space values, that will be
used for accessing the texture.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

10CGSG – Texturing, Sampling and Filtering

The Texturing Pipeline (4 phases) [ii]

 The process of obtaining these parameter-space values is called
mapping (the term texture mapping comes from here)

 Before these parameter-space values are used to access the
texture, one or more corresponder functions can be applied
to transform these values into texture space.

 These texture space locations are then used to access the pixel
value required.

 Finally, the retrieved values (from the texture) are then
potentially transformed again by a value transform function.

 These values are then used to modify (material, normal, etc)
the surface being rendered.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

11CGSG – Texturing, Sampling and Filtering

Pipeline for brick wall (Image from RTR)

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

12CGSG – Texturing, Sampling and Filtering

The Projector Function

 Given a surface (of an object) location, we project this
point into parameter space.

 This space is usually (during this course always) a
two-dimensional (u,v) space.

 This mapping can either be done

 Manually by modelling artists using some modelling software.
In this case each vertex is assigned a (u,v) value. Note that
one can always use a projector function to initialise these
values. These can be changed later.

 Automatically through a projector function

 Spherical

 Cylindrical

 Planar

 Note however that a spherical projection does not
need to always be carried out on a sphere. (check
next slide)

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

13CGSG – Texturing, Sampling and Filtering

Different Projections (Image from RTR)

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

14CGSG – Texturing, Sampling and Filtering

Natural Projections And others

 Some projector functions are not projections, but are an implicit part of
a surface description.

 Hence if you are rendering a parametric curved surface, then the
parameters themselves give you the (u,v) parameter space
coordinates.

 The location in space for the object depends on (u,v) hence the texture
value is easily found by simply using the same (u,v) parameters.

 Check example in previous slide.

 Texture coordinates can also be generated from other different
parameters such as view direction, temperature of surface, etc. As far
as you are concerned the projector function will give you texture
coordinates.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

15CGSG – Texturing, Sampling and Filtering

In most real-time work ... (in games for example)

 Projector functions are
pre-compiled and stored
per vertex at the
modelling stage.

 This is especially true
for complex geometry

 However there might be
situations where the
projector function has to
be applied in real-time.
With environment
mapping for example.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

16CGSG – Texturing, Sampling and Filtering

Texture Flattening (using UVLayout)

 Once you’ve got your geometry
done we usually use a UV
layout package in order to
texture our geometries.

 This is especially true for
complex geometry

 On your right is an example
from the software UVLayout ...
The texture map corresponds
to the torso of the ogre ...
Flattened.

 The holes represent the edges
which connect to the arms

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

17CGSG – Texturing, Sampling and Filtering

The Corresponder Function - Use

 The projector function is applied on the different vertices defining the
3D object.

 In between vertices textures still need to be applied i.e. The parameter
values need to be interpolated across the surface and used to retrieve
texture values.

 However before being interpolated these parameter values are
transformed using a corresponder function. (recall the example of the
brick wall a couple of slides ago)

 A corresponder function converts parameter space coordinates into
texture space coordinates.

 Different corresponder functions provide adequate functionality and
flexibility when applying textures to surfaces. We’ll check some in the
next slide.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

18CGSG – Texturing, Sampling and Filtering

The Corresponder Function - Examples

 Various corresponder function have been defined:

 Texture portion selection – suppose you only want to use
part (a sub image) of the available texture.

 Transformation matrix – this corresponder function can be
used to perform rotations, scaling, etc on the texture.

 Another class of corresponder functions controls the way an
image is applied to a surface when the (u,v) parameter
space coordinates are beyond [0,1].

 NOTE IMPORTANT: that the reason why (u,v) coordinates are specified
between [0,1] is mainly related to the fact that we can use different
resolution images for the textures. At the vertices we need only store
the same value irrespective of resolution of the image.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

19CGSG – Texturing, Sampling and Filtering

The Corresponder Function – RTR Image

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

20CGSG – Texturing, Sampling and Filtering

The Corresponder Function outside [0,1]

 As seen in the previous slide a number of possibilities are commonly
employed to tackle parameterised values outside [0,1]. These are:

 Wrap or Repeat: The image repeats itself across the surface; algorithmically
the integer part of the parameter space values are dropped. If you have a
tiled surface is will be a good option. Also good for terrains (grass for eg)

 Mirror: The image repeats itself across the surface but is mirrored on every
repetition. Good if you want to provide continuity between the edges of the
texture on the surface.

 Clamp: Values outside the range [0,1] are clamped to this range ...
Essentially extending the edges of the texture on the surface.

 Border: Parameter space values outside the [0,1] range are assigned a
predetermined border colour value.

 Note that these functions can be applied differently along both axis ...
For e.g. The texture could repeat along the u-axis and get clamped
along the v-axis

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

21CGSG – Texturing, Sampling and Filtering

Texture Values – Output of the pipeline...

 Once we calculate the texture-space coordinates (using the
corresponder function of course !!) we can retrieve the texture value.

 We shall only be dealing with image texturing ... In which case the
value that we need is a texel.

 Which is usually an RGBa value

 RGB = Red Green Blue channels

 A = alpha channel which (normally) describes the opacity of the
texel. In practice this value will tell us how much the texel colour
will effect the surface pixel.

 Optionally this value can be transformed to produce the
transformed texture value.

 This will depend on what sort of texture mapping one is doing. For eg in
shadow mapping some transformations need to take place here.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

22CGSG – Texturing, Sampling and Filtering

What is Interpolation?

 Linear first !! ...

 Lerp quasi acronym for LI

 Is usually a function within

math APIs

 Given two known points (x0, y0) and (x1, y1) we can
interpolate the values of y through x = x0 to x1

x0 , y0

x1 , y1

x,y

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

23CGSG – Texturing, Sampling and Filtering

What is Interpolation?

 Bilinear ...

 Linear interpolation in two directions.

 The first LI (horizontal axis) will give us

two points R1 and R2.

 We then Linearly Interpolate (LI) between R1 and R2 in
order to get the required value P.

 You can check the equation on many textbooks and on
some sites on the internet.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

24CGSG – Texturing, Sampling and Filtering

Perspective Correct Interpolation for Texture
Mapping on Primitives

 As you know by now rasterisation is the process of
converting primitives (traingles, lines, etc) onto the
screen, i.e. determining which pixels make up the
primitive.

 When mapping textures to these surfaces problems arise
on oblique surface if linear interpolation of the textures is
carried out as shown in the image below.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

25CGSG – Texturing, Sampling and Filtering

Perspective Correct Interpolation (Visual)

Projection Plane

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

26CGSG – Texturing, Sampling and Filtering

Perspective Correct Interpolation (i)

 Suppose we have a vertex, v, that is perspectively
projected (check viewer optics slides), then divided by
the w component to obtain the NDC p = (px, py, pz, 1)

 Recall that pz is now stored in the z-buffer

 Each vertex will have (u,v) coordinates stored as well

 The screen positions can be linearly interpolated ... To
get the intermediate p values.

 Problem is that if texture coordinates are linearly
interpolated, improper foreshortening due to the
perspective effect will be achieved (as seen in prev
image)

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

27CGSG – Texturing, Sampling and Filtering

Perspective Correct Interpolation (ii)

 A simple solution which uses the w (depth value) is used
as proposed by Heckbert, Moreton and Blinn.

 Instead of linearly interpolated u and v, they
demonstrate that we can linearly interpolate 1/w and
(u/w, v/w) instead.

 The required (u,v) coordinates are then extracted from
the values.

 Basically we have (u,v) = (u/w, v/w) / (1/w)

 Perspective correct interpolation is automatically carried
out in hardware during rasterisation.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

28CGSG – Texturing, Sampling and Filtering

Image Texturing ... Some considerations

 So far we’ve seen how to calculate the texture coordinates
necessary to retrieve the texel value.

 However things are (as usual) not this simple in practice.

 Assume we have a 256x256 image which we are using as a
texture for the side of a box.

 If on screen (when rendered) the box is close to 256x256 pixels
then everything will look perfect ... You are practically looking
at the original image. BUT ...

 What happens when the projected square covers much more
than 256x256? Magnification problem.

 What happens when the projected square covers only a few
pixels? Minification problem.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

29CGSG – Texturing, Sampling and Filtering

Image Texturing ... Magnification and Minification

 At a finer level ...

 Magnification – a single pixel on the screen can correspond to a
tiny portion of the texel.

 Minification – a single pixel no the screen can correspond to a
number of texels

 In both cases we need to sort out which texels are going
to be used from the texture and how they should be
averaged (minification) or interpolated (magnification)

 Aliasing problems can be generated at his stage

 A number of filters can be used (implemented on the GPU) to determine which
texel value to use.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

30CGSG – Texturing, Sampling and Filtering

Aliasing ... and antialiasing

 Aliasing is a visual effect caused whenever the output device does not have
enough resolution to output a smooth line/edge.

 The problem here is that the pixel color goes from black to white instantly … there
is not grey in between.

 Edges with this stair like feature are referred to as ‘jaggies’

 Antialiasing techniques try to address this problem through the use of sampling
and filtering.

 In texture mapping aliasing will occur with minification.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

31CGSG – Texturing, Sampling and Filtering

Magnification (example from RTR)

Before we discuss Magnification and Minification we’ll cover the basics of both

sampling and filtering.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

32CGSG – Texturing, Sampling and Filtering

Sampling And Filtering (i)

 The process of rendering an image is inherently a sampling task … given that the
generation of a 2D image is the process of sampling a 3D scene in order to obtain
colour values for each pixel (This is particulary evident in ray tracing approaches)

 In texture mapping, textures are sampled in order to fill in the space on screen
where the polygon stretches.

 Let’s say the middle image is our texture … to the left and to the right sampling
and filtering need to be carried out from the original image (which remember has
a fixed number of texels).

 Therefore for texture mapping, texels have to be resampled to get good results
under varying conditions.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

33CGSG – Texturing, Sampling and Filtering

Sampling And Filtering (ii)

 An important concept in sampling theory is the Nyquist limit.

 If a signal is undersampled then it’s impossible to correctly
reconstuct the original signal from the samples …

 i.e. if a texture is undersampled (in minification) then the
reconstructed image will not be good enough.

 Aliasing (jaggies) is a common problem resulting from
undersampling.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

34CGSG – Texturing, Sampling and Filtering

Sampling And Filtering (iii)

 In order to alter the size (magnification or minification) of a
texture filtering needs to take place.

 The underlying graphics hardware will carry out magnification
(or min) using a filtering technique.

 The most common filtering techniques are:

 Box Filter (Nearest Neighbour)

 Bilinear Interpolation

 Cubic Convolution

 Convolution is a technique used in order to apply filters and
makes use of kernels.

 Filters can be performed in a shader program.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

35CGSG – Texturing, Sampling and Filtering

Magnification ...

 In the previous example ... The underlying graphics
system needs to enlarge (magnify) the texture.

 This mapping from 48x48 to 320x320 means that some
form of filtering needs to occur.

 Box Filter: this filter basically increases the size of each
pixel in the original texture. Obviously the individual
textures become more apparent, causing an effect
referred to as pixelation.

 The quality of the filtering method is poor however it’s
the fastest given that you only need one texel to be
fetched per pixel.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

36CGSG – Texturing, Sampling and Filtering

Magnification ... Bilinear interpolation (i)

 A more commonly used filtering method makes use of bilinear
interpolation (across texels)

 For each pixel, four texels (neighbouring ones) are fetched from the
texture. These are then interpolated in two dimensions to find a
blended value for the new pixel.

 The effect is to blur the image … some sharpness is lost, but also the
jaggedness of the box filter has now largely decreased.

 Let’s say (pu, pv) = (81.92, 74.24). The fractions are used in computing
the bilinear combination of the four closest texels.

 The next slide shows the image (from RTR) describing the notation of
bilinear interpolation, together with the formula for b(pu,pv) which gives
the bilinearly interpolated value.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

37CGSG – Texturing, Sampling and Filtering

Magnification ... Bilinear interpolation (ii)

 The interpolation formula becomes simpler if the 4 known
points lie on (0,0) (0,1) (1,0) and (1,1).

 b(pu, pv) =

(1 - u’)(1 - v’) t(xl,yb) + u’(1 - v’) t(xr, yb) + (1 - u’)v’ t(xl, yt) + u’v’
t(xr, yt)

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

38CGSG – Texturing, Sampling and Filtering

Magnification ... Detail Textures

 Magnification will introduce some form of blurriness in the resulting
image …

 One simple technique to alleviate this problem is to use what are
referred to as detail textures.

 The techqniue makes use of small (high-resolution) textures such as for
example images representing scratches, foliage, or some other surface
detail.

 These textures are overlaid repetitively over the original magnified
texture as a separate texture, at a different scale.

 This has the effect similar to the use of a single high-resolution texture.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

39CGSG – Texturing, Sampling and Filtering

Minification ...

 When a texture is minimised, several texels may end up covering the
same pixel.

 In order to get a correct colour value one should fetch all the texels
which cover the pixel and integrate their effect on the pixel.

 It is effectively impossible to do so in real-time (30/40 times a second)
… and most of the times it’s a waste of time (suppose there are 1000
texels covering 1 pixel)

 For real-time a number of techniques are used to address this problem.

 In a similar fashion to magnification … a nearest neighbour technique
can be used which returns one single texel which is at the centre of the
pixel.

 This filter is clearly not very good … it will cause severe aliasing
problems as seen in the image on the next slide.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

40CGSG – Texturing, Sampling and Filtering

Minification ... example

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

41CGSG – Texturing, Sampling and Filtering

Minification ... Bilinear interpolation

 Bilinear interpolation can also be used for minification.

 4 texels in the original texture are interpolated to produce a value for
one pixel.

 Problem here (as opposed to magnification) is that many times a pixel
is influenced by more than four texels.

 If this is the case the same problems of a box filter will pop up … i.e.
increase in aliasing artefacts.

 Various texture minification algorithms have been developed for real-
time work, most of them based on the creation of a data structure
which is used to store pre-processed textures purposely built to help
compute a quick approximation of the effect of a set of texels on a
pixel.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

42CGSG – Texturing, Sampling and Filtering

Mipmapping

 A widely used (implemented on all modern GPUs) method of
antialiasing for textures (note that antialiasing can be screen based) is
called mipmapping.

 MIP stands for multum in parvo (many things in a small place -
minification)

 Mipmapping takes the original texture and filters it down repeatedly
into smaller images – i.e. the original texture is augmented with a set
of smaller versions of the texture before the actual rendering takes
place, thus improving both rendering performance and visual quality.

 The original texture (level zero) is downsampled to a quarter of the
original area (averaging out four neighbouring texels). This
downsampling is carried out recursively until one or both of the
dimensions of the texture equal one texel.

 This set of images is referred to as a mipmap chain.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

43CGSG – Texturing, Sampling and Filtering

Mipmapping Example (from RTR)

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

44CGSG – Texturing, Sampling and Filtering

Mipmapping in OpenGL

 The texture filters available are:

 GL_NEAREST

 GL_LINEAR

 GL_NEAREST_MIPMAP_NEAREST
 Select the nearest mip level and perform nearest neighbour filtering.

 GL_NEAREST_MIPMAP_LINEAR
 Perform a linear interpolation between mip levels and perform nearest neighbour filter

 GL_LINEAR_MIPMAP_NEAREST
 Select the nearest mip level and perform linear filtering

 GL_LINEAR_MIPMAP_LINEAR
 Perform a linear interpolation between mip levels and perform linear filtering; also called trilinear

mipmapping.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

45CGSG – Texturing, Sampling and Filtering

Choosing MIP level (choosing d)

 Each screen pixel encloses an area on the texture itself, as seen in the
diagram below where the pixel is projected onto the texture space.

 We now need to figure out how many texels (portion of the texture)
influence the pixel and from this determine the value d.

 The ideal situation would be a 1:1 ratio between pixel and texel.

 We shall not be looking at the algorithms for the best selection of d but
it’s important to understand how mipmaps work.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

46CGSG – Texturing, Sampling and Filtering

RipMap – A Mipmap extension

 A mipmap is usually an isotropic structure, i.e. Both the x and y
dimensions are the same size ... A square texture.

 However problems occur

when we want to project

pixels (on texels) which

are oblique to the viewing

angle.

 A ripmap will also sample

and store textures which

are rectangular.

 1x1, 1x2, 2x1, 2x2, 2x4, etc

 ... Expensive for memory

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

47CGSG – Texturing, Sampling and Filtering

Summed Area Table (i)

 Another way of calculating the color of a pixel (and avoid overblurring)
whilst texturing is to use the SAT method.

 An array the size of the texture is created and populated (at each texel
therefore) with the sum of all the corresponding texture’s texels in the
rectangle formed by this location and texel at the origin i.e. (0,0).

 During texturing, the pixel cell’s projection onto the texture is bound by
a rectanlge as seen below.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

48CGSG – Texturing, Sampling and Filtering

Summed Area Table (ii)

 The summed area table is then used to calculate the average colour of
this rectangle, which is passed back as the texture’s colour of the pixel.

 The average is calucated using texture coordinates by using the
following formula:

 Essentially from the big box we subtract the two smaller boxes and re-
add the portion (box) that was subtracted twice. We then divide by the
number of texels in the bounding box.

 This method does not work very well when the back projection falls
diagonally in the texture space.

