
Computer Graphics & Simulation Group Department of Computer Science - University of Malta

1CGSG – GPU Shaders

GPU Shaders

Sandro Spina
Computer Graphics and Simulation Group

Computer Science Department
University of Malta

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

2CGSG – GPU Shaders

Graphics Accelerators ...later GPUs

 Graphics accelerators main purpose is that of

accelerating the graphics pipeline

 Acceleration has started towards the end of the pipeline,

by performing rasterization of a triangle’s scanlines.

Basically drawing on the screen.

 Successive iterations (improvements) on this hardware

worked back up the pipeline.

 The more things done in hardware, the faster the pipeline

became. Speed is fundamental in graphics.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

3CGSG – GPU Shaders

Nvidia GeForce256

 The first consumer chip to include hardware vertex

processing was Nvidia’s GeForce256 graphics card in

1999. (Not too many years ago !!!)

 Nvidia then coined the term Graphics Processing Unit, so

that it could differentiate this chip from others that could

only accelerate rasterisation.

 This GPU was highly configurable ... Made of a highly

complex and configurable fixed function pipeline.

 Over the years hardware vendors improved on this.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

4CGSG – GPU Shaders

From fixed to programmable ...

 From a highly configurable piece of hardware, the GPU

evolved into a highly programmable unit, where

developers could implement their own algorithms.

 The programs that can be written for GPU are referred to

as shaders.

 We’ll be discussing in some detail (and using when we

discuss lighting) two types of shaders:

 Vertex Shader

 Pixel(Fragment) Shader

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

5CGSG – GPU Shaders

Vertex and Pixel Shaders

 A Vertex Shader is responsible for the various

operations that are performed on the vertices composing

our 3D scene.

 A Pixel Shader (executed after the vertex shader)

processes individual pixels, thus allowing complex

shading equations to the evaluated on a per pixel basis.

 DirectX uses HLSL (High Level Shading Language)

 OpenGL uses GLSL (Graphics Library Shading Language)

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

6CGSG – GPU Shaders

GPU Pipeline overview (visual)

 Vertex, Geometry and Pixel and completely

programmable using shader languages such as GLSL,

HLSL, and CG (C for Graphics)

 Geometry shader stage is optional ...

 Clipping and Merger are configurable but not

programmable.

 Screen Mapping, Triangle Setup, Triangle Traversal are

fixed function.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

7CGSG – GPU Shaders

GPU Pipeline (i)

 Through the pipeline the Vertex Shader is typically used

to implement the :

 Model and View Transform

 Vertex Shading

 Projection Transform

 The Pixel Shading perform (obviously) the pixel shading

i.e. determining the final colour of each individual pixel.

 The Merger functional stage is in charge of the many

buffers (Z, Blend, Stencil, Colour, etc) at the end of the

pipeline. Functionality is configurable.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

8CGSG – GPU Shaders

Shader Models

 In a similar way as to how GPUs evolved, shaders (and their

languages) have also evolved over time.

 Modern shader stages (Shader Model 4.0, DirectX 10 on Vista)

use what is referred to as a common-shader core, which

indicates that the various vertex, geometry and pixel shaders

share the same programming model.

 This common-shader core is essentially the API that is made

available to the programmer.

 NOTE: Throughout this course we shall not discuss in detail the

variations between these shader models but we shall be using

shaders as required to illustrate for eg. how lighting works.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

9CGSG – GPU Shaders

Shader Programming Models (i)

 Shaders are programmed using a C-like programming

language.

 These include GLSL, HLSL and Cg.

 All are compiled to a machine-independent assembly

language, the intermediate language (IL).

 The assembly is then converted into actual machine code

in a separate step by the drivers.

 This is done in order to increase compatibility across

different hardware implementations.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

10CGSG – GPU Shaders

Shader Programming Models (ii)

 This assembly language can be seen as defining a virtual

machine (similar to the JVM for eg.) which is targeted by

the shading language compiler.

 This virtual machine is (similar to) a processor with

various types of registers and data sources, programmed

with a set of instructions.

 These processors have SIMD capabilities.

 32-bit single precision floating-point scalars and vectors

and the basic data types. Floating point vectors are used

to store vertices, normals, matrix rows, colours (rgba),

etc. ...

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

11CGSG – GPU Shaders

Shader Programming Models (iii)

 A draw call invokes the API to draw a group of primitives,

so causing the graphics pipeline to execute. glBegin() ...

glEnd()

 Each shader stage has two types of input :

 Uniform Inputs : with values that remain constant throughout a

draw call (can change between calls of course)

 Varying Inputs : with values are different for each vertex or pixel

processed by the shader.

 Different registers are used for these different types of

inputs. Uniform types use read-only registers.

 Textures (uniform input) use separate registers.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

12CGSG – GPU Shaders

Virtual Machine Architecture

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

13CGSG – GPU Shaders

Shader Programming Model (iv)

 Operations that are common in CG are efficiently

executed on GPUs.

 These operations include::

 Vector Multiplications, Addition, Dot-Product, etc.

 Reciprocal, Square-roots, sine, cosine, etc.

 Texture operations.

 Intrinsic functions such as vector normalisation, reflection, cross

product, matrix transpose, determinant, etc

 Shader language also provide traditional flow-control

such as that found in general purpose programming

languages. Eg. if, case, etc.

 Either Static or Dynamic flow control can be used.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

14CGSG – GPU Shaders

Lighting Calculation example ...

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

15CGSG – GPU Shaders

An example shader for lighting ...

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

16CGSG – GPU Shaders

The Vertex Shader

 First shader in the pipeline ...

 The input to this first shader is a triangle mesh

represented by a set of vertices and additional

information stating which vertices form each triangle.

 This is however the vertex shader (not triangle shader)

so the data available is only the vertex. The vertex

shader deals exclusively with incoming vertices.

 As a minimum the vertex shader transforms vertices

from model space to homogeneous clip space. There

performing the model->view->projection transform.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

17CGSG – GPU Shaders

Between Vertex and Pixel(Fragment) Shaders

 Before the output of the vertex shader is passed on to the input

of the pixel (fragment) shader a number of (fixed function)

operations take place.

 The first operation is clipping, which clips the current primitive

against the view volume and in so doing possibly adds or

removes vertices.

 After clipping the perspective divide by W occurs, yielding

normalised device coordinates, which eventually produce

window-space coordinates.

 The rasterisation stage is then responsible for taking these

processed vertices (of a triangle primitive for eg.) and turn

them into fragments.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

18CGSG – GPU Shaders

Rasterisation

 Check the triangle here ->

 The three vertices defining the

primitive determine the fragments

(pixels).

 Which has 12 pixels. The fragments fill in the

triangle primitive.

 Rasterisation happens for point, line and polygon

primitives. In the case of a polygon the algorithms

needs to fill in the whole area of the polygon with

fragments.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

19CGSG – GPU Shaders

The Pixel(Fragment) Shader

 After the vertex (and possibly the geometry) shader

comes the pixel shader. Referred to as fragment shader

in OpenGL.

 Prior to entering this stage the primitive is clipped if

necessary (against the unit volume) and is set up for

rasterisation (as seen in previous slide), i.e. each triangle

is traversed and the values at the vertices are

interpolated across the triangle’s area.

 The pixel shader’s role is that of shading all the surfaces

of the triangles composing the scene. But it does so one

pixel at a time ... The input to the pixel shader is equal to

the output of the vertex shader.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

20CGSG – GPU Shaders

The Pixel(Fragment) Shader (ii)

 The input to the pixel shader includes vertex information

(such as colour) output from the vertex shader.

 Texture Coordinates per vertex (we still need to check

these out) are also available to the fragment shader.

 The pixel shader’s limitation is that it can influence only

the fragment (pixel) handed it.

 It cannot send its results to neighbouring pixels. This is

not such a problem really because each fragment’s colour

is calculated by interpolating data from the same

vertices.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

21CGSG – GPU Shaders

OpenGL Shaders

Vertex

Shader

Fragment

Shader

Clipping

Vertices with

associated attributes

Rasterisation of

points, lines,

polygons and pixel

rectangles.

Fragments with

associated attributes

Anti-Aliasing

Per fragment operations.

Scissor test, alpha test, stencil

test, depth test, etc.

Framebuffer writes.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

22CGSG – GPU Shaders

Managing GLSL Shaders (i)

 Shaders, written on separate files, have to be loaded and

then compiled by an OpenGL application. The following

steps are required

 Creating a shader object: we first need to create a

shader object specifying what type of shader it will be

loading. Either GL_VERTEX_SHADER or

GL_FRAGMENT_SHADER using the function:

 Gluint myVertexShader =

glCreateShader(GL_VERTEX_SHADER);

 0 is returned if problems are encountered when creating

the object.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

23CGSG – GPU Shaders

Managing GLSL Shaders (ii)

 We next specify and load the shader text.

 Note that GLSL accepts shader text rather than

precompiled binaries. This is always a good thing as you

then compile it with the latest OpenGL drivers for your

card.

 The shader text is loaded into the shader object (just

created) using the function:

 glShaderSource(myVertexShader, 1, myStringPtr, NULL);

 myStringPtr is a pointer to the shader text loaded from

file.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

24CGSG – GPU Shaders

Managing GLSL Shaders (iii)

 Once loaded the shader needs to be compiled.

 Shader text is first parsed making sure there are no errors.

 glCompileShader(myVertexShader);

 glCompileShader(myFragmentShader);

 IMP: you can debug your shader by querying the status of

compilation. glGetShaderInfoLog(....) returns a string with

any compilation errors.

 GLSL code is compiled when your OpenGL code is executed.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

25CGSG – GPU Shaders

Managing GLSL Shaders (iv)

 Now that we have the compiled shader object we’ll need to link

it into the same executable (OpenGL + GLSL binaries)

 OpenGL provides Program Objects for this purpose to which

compiled shaders can be attached.

 Creating Program Objects involves calling the function:

 Gluint myProgram = glCreateProgram();

 glDeleteProgram(myProgram) \\ when done to release memory

 We then attach a shader object to this program object.

 glAttachShader(myProgram, myVertexShader)

 glAttachShader(myProgram, myFragmentShader)

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

26CGSG – GPU Shaders

Managing GLSL Shaders (v)

 Now that we have the compiled shader object we’ll need to link

it into the same executable (OpenGL + GLSL binaries)

 OpenGL provides Program Objects for this purpose to which

compiler shaders can be attached.

 Creating Program Objects involves calling the function:

 Gluint myProgram = glCreateProgram();

 glDeleteProgram(myProgram) \\ when done to release memory

 We then attach a shader object to this program object.

 glAttachShader(myProgram, myVertexShader)

 glAttachShader(myProgram, myFragmentShader)

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

27CGSG – GPU Shaders

Managing GLSL Shaders (vi)

 Finally before we can use GLSL for rendering we need to link

the program object using glLinkProgram(myProgram);

 All the shaders are now within the same executable with the

opengl program.

 You can check whether the linking went well by querying the

infoLog using:

 glGetProgramiv(myProgram, GL_LINK_STATUS, &success)

 glGetProgramInfoLog(myProgram, MAX_INFO_LOG_SIZE, NULL, infoLog)

 Just to make sure everything is fine one can use

glValidateProgram(myProgram) and finally issue a call to

glUseProgram(myProgram).

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

28CGSG – GPU Shaders

Communicating with GLSL (i)

 Suppose we’ve defined some light sources in our OpenGL

code. We clearly need to pass this information over to the

shaders.

 Communication is one way ... The shaders cannot talk

back to the program. They simply render to some buffer

(colour, depth, etc)

 The shader has access to some of the state within

OpenGL, therefore by altering this state one can

effectively communicate with the shaders.

 This is a bit cumbersome however and not very intuitive

really.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

29CGSG – GPU Shaders

Communicating with GLSL (ii)

 GLSL also allows the definition of user defined variables

for an OpenGL application to communicate with the

shaders.

 For this purpose GLSL provides two types of variable

qualifiers :

 Uniform: A value that remains constant during each shader

execution, however it’s value is not known at compile time. Not like

a const and is initialised out of the shader. A uniform is shared

between the vertex and fragment shaders.

 Attribute: Read-only per-vertex data, available only within vertex

shaders. This data comes from the current vertex state or from

vertex arrays. Can be either floating-point scalar, vector, or matrix.

Not an array or structure.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

30CGSG – GPU Shaders

Variables

 In addition to bool, int, and float-point types (as found in

C), GLSL introduces some data types commonly used in

CG.

 These include vector types, matrix types, samplers (used

to reference image textures).

 All variables and functions must be declared in advance.

 GLSL uses as well some built-in variables (starting with

gl_) which allow for interaction with fixed pipeline

functionality.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

31CGSG – GPU Shaders

Uniform Variables

 The value of a uniform variable (declared in GLSL code) can only be set

for a primitive, therefore modified outside a glBegin/glEnd primitive

draw.

 Their value will not change during this call ... hence vertex properties

cannot be passed from OpenGL to the shader using these variables.

 Light positions do not change throughout the render of the frame hence

can be communicated using these variables.

 glGetUniformLocation(Gluint program, const char *name) is used from

the OpenGL code to get the memory address where the variable is

stored.

 This memory location is then used in glUniformnf(GLint location, Glfloat

v0 ... Glfloat vn) to assign the variable.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

32CGSG – GPU Shaders

Attribute Variables

 If we are required to set attributes(properties) per vertex then

attribute variables must be used.

 These variables can only be read in a vertex shader, mostly because

they would normally contain data related to the vertex

attributes/properties not required by a fragment shader.

 Attribute variables are set in a similar way to uniform variables by

getting their memory locations than updating them from the OpenGL

program.

 GLint glGetAttribLocation(GLuint program,char *name) with parameters

program referring to the handle to the program and name referring to

the name of the attribute variable

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

33CGSG – GPU Shaders

Some Fragment Shaders

 We shall be looking at lighting shaders when we cover

illumination ... For now we’ll have a look at some simple

fragment shaders in order to get an idea of how these work.

 GrayScale Fragment Shader

 Sepia Tone Fragment Shader

 Inversion Fragment Shader

 B&W Negative Fragment Shader

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

34CGSG – GPU Shaders

Image Processing with Fragment Shaders

 Image processing is one application of fragment shaders which does

not depend on vertex shaders.

 Essentially we can apply convolution kernels after drawing a scene to

post-process the scene in a number of ways.

 The scene is first draw using a ‘normal’ fragment shader. The pixels in

the frame buffer are then used as a texture, which is then used for

image processing.

 We shall check a number of implementation including:

 Blur Fragment Shader

 Sharpen Fragment Shader

 Edge Detection Fragment Shader

 Erosion and Dilation Fragment Shaders

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

35CGSG – GPU Shaders

HLSL Shaders

 HLSL shaders work in a similar way to GLSL ones ...

 Using XNA we can however avoid all the hassle of loading, compiling

and linking a shader ... And we can use the content pipeline.

 HLSL Semantics : HLSL has semantics that are used to link the input

and output of values from the graphics pipeline. A semantic is a

keyword used to bind your variables to the inputs and outputs of a

shader, and tells HLSL how the variable is used.

 For eg:

 float4 vertexPos : POSITION

 float4 color : COLOR0;

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

36CGSG – GPU Shaders

Shaders, Techniques and Passes

 Unlike GLSL, in HLSL shaders do not have reserved words for their

entry points (such as main()).

 In HLSL you would create the function, name it whatever you wanted,

and tell the HLSL compiler its name. This is done in the shaders

technique.

 A technique is basically an effect that is specified by a set of vertex,

geometry and pixel shaders. You can have as many techniques as you

want in one file.

 Technique SimpleEffect {

Pass Pass0 {

//shaders

VertexShader = compile vs_3_0 VertexShaderMain();

PixelShader = compile ps_3_0 PixelShaderMain();

}

}

