
Computer Graphics & Simulation Group Department of Computer Science - University of Malta

1CGSG – Geometry Primitives

Geometry Primitives

Sandro Spina
Computer Graphics and Simulation Group

Computer Science Department
University of Malta

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

2CGSG – Geometry Primitives

The Building Blocks of Geometry

 The objects in our virtual worlds are composed of a

number of basic primitives.

 With only these few building blocks, we can create highly

complex realistic structures.

 During this module you will learn most of the things you

need to know in order to draw objects in three

dimensions from these building blocks.

 In this module we shall be using OpenGL to describe and

carry out some implementations using these primitives.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

3CGSG – Geometry Primitives

Points ... (not Pixels)

 We have already seen that our image will finally be

rendered as a number of pixels.

 A pixel is the smallest element in your computer screen

... And can be one of many different colours.

 ... So if you want to draw a line, just select two pixels

and fill in all the pixels falling on the line between them.

 In Computer Graphics however, our points are

fundamentally different.

 We don’t care (as such) about screen coordinates but

rather positional coordinates in some volume.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

4CGSG – Geometry Primitives

A Drawing Canvas (in 3D)

 We need a 3D coordinate system to define out 3D

canvas.

 On this 3D canvas we’ll draw our graphics primitives.

 We can visualise a 3D canvas as a volume with a

Cartesian coordinate space enclosed.

 We define boundaries on this space ... Let‘s say -100 to

+100 along the three axes x,y and z.

 This volume will determine the clipping volume.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

5CGSG – Geometry Primitives

The Vertex (3D Point)

 The most basic of all primitives is the point (or vertex)

 Remember the game (on newspapers mainly) connect

the dots ...

 The image starts to make sense only when you connect

the dots (points)

 A set of points define the image But not just that

 How they are connected plays a fundamental role

 In order to draw a point (using OpenGL here but this is

valid with DirectX as well using different syntax) we use

the glVertex3f function.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

6CGSG – Geometry Primitives

The OpenGL Vertex (Example)

 glVertex3f(20.0f, 40.0f, 0.0f);

 Note that we use floating point numbers to represent

coordinates.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

7CGSG – Geometry Primitives

The Primitives

 Important: A primitive is the interpretation of a set of

vertices into some shape.

 A vertex on it’s own can be a primitive but we need to

specify that the point is actually a primitive.

 However a vertex can be part of some other primitive ...

 The endpoint of a line

 The corner of a quad

 The corner of a triangle

 In OpenGL there are 10 primitives – as we’ll see most of

the times however we’ll be using the triangle primitive.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

8CGSG – Geometry Primitives

Drawing Primitives

 We need to indicate to our graphics hardware that we

want to start drawing a primitive ...

 In OpenGL we use the function glBegin() to tell OpenGL

to begin interpreting a list of vertices as a particular

primitive.

 Once your program submits all the vertices a call to

glEnd() will advice OpenGL that you’re done ...

 If you’ve done everything right OpenGL will then be able

to display that primitive on screen.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

9CGSG – Geometry Primitives

Drawing Points

 As we said earlier a Point on it’s own is also a primitive if

we want to.

 The following code is telling OpenGL that we want to

draw point primitives ...

 glBegin(GL_POINTS);

glVertex3f(0.0f, 0.0f, 0.0f);

glVertex3f(20.0f, -20.0f, 0.0f);

glVertex3f(-20.0f, 20.0f, 0.0f);

glVertex3f(0.0f, 0.0f, -20.0f);

glEnd();

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

10CGSG – Geometry Primitives

Check First Example (Points)

 I am using code::blocks to carry out my implementations

of OpenGL.

 I recommend you download it. It’s fantastic.

 The example we’ll be checking out is available on the

OpenGL Super Bible 4th Edition book.

 There are a number of functions which we have not

covered ... Don’t worry too much about them for the time

being. Focus on the drawing of the point primitives.

 Switch to Code::Blocks example points spiral

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

11CGSG – Geometry Primitives

Properties of Points

 Points are draw by default as squares ...

 We can specify the size of the points using the function

glPointSize() ... By defauly value is 1.

 Note that the point size cannot be changed between the

glBegin() and glEnd() calls

 We need to set this before.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

12CGSG – Geometry Primitives

The Line Primitive

 The next logical steps is to draw a line primitive.

 As opposed to a GL_POINTS primitive which simple draws

a point/vertex specified, GL_LINES takes two vertices

and draws a line between them.

 glBegin(GL_LINES);

glVertex3f(0.0f, 0.0f, 0.0f);

glVertex3f(20.0f, 20.0f, 0.0f);

glVertex3f(0.0f, 0.0f, 0.0f);

glVertex3f(-20.0f, -20.0f, 0.0f);

glEnd()

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

13CGSG – Geometry Primitives

Check 2nd Example (Lines)

 In this second example we’ll be drawing lines from the

origin to different parts of the circumference of a circle.

 Again cos(angle) gives us the x-coordinate

 And sin(angle) gives us the y-coordinate

 We keep the z-coordinate to 0 ... But we can easily

extend this example to draw a sphere.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

14CGSG – Geometry Primitives

Line Strip & Line Loop Primitives

 Two different OpenGL primitives ...

 In GL_LINE_STRIP a line is drawn from one vertex to the next.

 Similar to GL_LINE but with reuse of vertices as opposed to

GL_LINE.

 The GL_LINE_STRIP can be composed of as many vertices as

required.

 GL_LINE_LOOP behaves exactly like GL_LINE_STRIP but draws

an additional line between the first and last vertex specified.

Perfect to draw polygons.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

15CGSG – Geometry Primitives

Line Strip & Line Loop Primitives

 We can use GL_LINE_STRIP to approximate a curve.

 Clearly the more vertices specified (the more close to one

another) the better the approximation is.

 Revisit example one but now using GL_LINE_STRIP instead of

GL_POINTS

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

16CGSG – Geometry Primitives

Line Stippling .. (not a primitive)

 Stippling is a property of the line

 Essentially makes the line appear either dotted or dashed.

 glEnable(GL_LINE_STIPPLE) enables this property whereas

glDisable(GL_LINE_STIPPLE) disables it. In OpenGL properties

are set and reset in this way.

 A call to glLineStipple(Glint factor, Glushort pattern) establishes

the pattern used to draw the lines.

 The pattern parameter is a 16-bit value, where each bit

represents a section of the line (on or off). Factor parameter is

used as a multiplier of the pattern.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

17CGSG – Geometry Primitives

The Triangle Primitive (i)

 Without any doubt the most important primitive in CG

 So far with the primitives we’ve seen we can draw everything

especially if you consider that ultimately a triangle is simply 3

lines where the third vertex is connected back to the first.

 The problem with lines is that you are not creating surfaces ...

Hence we apply colour. We can of course apply colour to the

line itself but not the surface between the lines.

 With lines we can create wireframe cube and not a solid cube.

 To draw solid objects we need polygons, and triangles are the

most basic of all polygons.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

18CGSG – Geometry Primitives

The Triangle Primitive (ii)

 To draw the simplest of polygons we make use of

GL_TRIANGLES

 glBegin(GL_TRIANGLES)

glVertex2f(0.0f, 0.0f);

glVertex2f(20.0f, 20.0f);

glVertex2f(10.0f, 10.0f);

glVertex2f(-20.0f, 0.0f);

glVertex2f(0.0f, 20.f);

glVertex2f(-10.0f, 10.0f);

glEnd();

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

19CGSG – Geometry Primitives

Winding (i)

 You might have noticed that there are two ways by which

I can specify the same triangle.

 Either V0, V1, V2 or V2, V1, V0

 This very important property of polygons is referred to as

winding ... and essentially determines which direction

the ‘top’ surface of the polygon is facing. Very important

for back-face culling.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

20CGSG – Geometry Primitives

Winding (ii)

 The three vertices of the triangle make up its face which can be

either front face or back face.

 In OpenGL, by default, polygons with counter-clockwise winding

are considered to be front facing.

 In DirectX, by default, polygons with clockwise winding are

considered to be front facing.

 Why is this important to know?

 Front and back might have different characteristics

 Back-Face Culling

 VERY IMPORTANT : consistency throughout

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

21CGSG – Geometry Primitives

Triangle Strips Primitive

 To represent different shapes (models) we need to draw

many triangles connected to each other.

 For example we can draw a square by connecting two

triangles one to the other. We can then create a cube

from 2*6faces = 12 triangles.

 Instead of specifying the vertices of the triangles for each

triangle (in a similar fashion to LINE_STRIP) we can

specify a sequence of vertices forming the triangles.

 GL_TRIANGLE_STRIP primitive.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

22CGSG – Geometry Primitives

An example ...

 Let’s say we specify five vertices which will give us four

triangles. I.e. One point per triangle after the first three

(very efficient!!)

 V0, V1, V2, V3, V4

V1V0

V2

V1V0

V2 V3

V1V0

V2 V3

V4

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

23CGSG – Geometry Primitives

Triangle Fans

 We can use GL_TRIANGLE_FAN in order to represent a

polygon made up of a number of connected triangles all

sharing a central point ...

 Assume we have V0, V1, V2, V3, V4

 V0 is the central vertex ... Then we have triangles

 V0, V1, V2

 V0, V2, V3

 V0, V3, V4

 Triangle fans are particularly useful to create cones

Obviously the higher the number of vertices the

smoother the circular base of the cone.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

24CGSG – Geometry Primitives

An Example Using Triangles

 We’ll now be checking some OpenGL code which draws a

cone ... (code available on the OpenGL SuperBible Book)

 We’ll be setting colours for the triangles faces

 Some of the functions we’ll see in the example we’ll be

looking at in a few weeks time.

 Depth Buffers and Back-face Culling

 Switch to code::blocks to check the code.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

25CGSG – Geometry Primitives

Quad Primitives ...

 To move from triangles to quads we simply need to add a

further vertex

 GL_QUADS draws a four-sided polygon which does not

necessarily have to be a square

 Quads are used to define flat surfaces like triangles.

 However it is important (very) that these vertices lie on

the same plane. This was not important for triangles

because any three points define one plane. With quads

it’s different since we use four points.

 Finally quads have clockwise winding !!!

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

26CGSG – Geometry Primitives

Quad Strips

 Behave in a similar way to lines and triangle strips ...

 6 vertices define two quadrilaterals...

 7 vertices define ? Nothing Because for every new

quad you need to define to further vertices.

 Therefore 8 vertices = 3 quads.

 Note that winding remains clockwise for GL_QUAD_STRIP

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

27CGSG – Geometry Primitives

Finally ... GL_POLYGON

 The most general primitive ... very rarely used (if not

never) is the GL_POLYGON

 You can use it to draw a polygon with any number of

sides.

 Actually it is quite redundant ...

 All vertices of the polygon must lie on the same plane.

 To make sure this is the case you can always use

GL_TRIANGLE_FAN ... In this case only the triangles will

need o be in the same plane and that’s guaranteed !!

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

28CGSG – Geometry Primitives

Convex Polygons

 For rendering performance reasons it is important that

polygons are convex.

 With triangles this is not an issue (well unless you align

the three points)

 In general a polygon is convex if it does not have any

indentation ... In other words if we had to draw a line

over the polygon this line would not enter and leave the

polygon more than once.

 If this line exists then the polygon is concave.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

29CGSG – Geometry Primitives

Subdivision And edges

 We can try to transform a concave polygon into a convex

one by adding some edges within the polygon. This can

be done through a technique called subdivision of

surfaces.

 Consider a polygon with the shape of a star. This is

concave.

 However if this polygon is split up into further polygons it

will become a list of convex polygons ...

 Actually it would be great if we could come up with a set

of triangles to describe the polygon.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

30CGSG – Geometry Primitives

Surfaces

 We have so far the building blocks of geometries

 Effectively what we’ll be doing is building surfaces using

these building blocks ...

 Quads and Triangles already do this ...

 We shall now be looking at a number of geometric shapes

which are usually built into 3D APIs as quadratic

functions.

 These functions allow us to draw spheres, cylinders,

cones and discs.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

31CGSG – Geometry Primitives

Quadratric Shapes / Surfaces...

 We shall again be using opengl (using C) to illustrate the

examples however equivalents are available in DirectX.

 Quadratic shapes are rendered using the quads or

triangle primitive.

 One can create many different objects simply by

connecting together spheres, cylinders (or cones) and

discs.

 Consider drawing an arrow with one cylinder, one cone,

one disc.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

32CGSG – Geometry Primitives

OpenGL Code Specifics – Creating a Quadric

 GLUT Library

GLUquadricObj *pObj;

pObj = gluNewQuadric();

//set parameters ...

gluDeleteQuadric(pObj) // free memory

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

33CGSG – Geometry Primitives

Quadric Shapes ... Draw Styles

 GLUT allows us to modify the way these quads are

rendered through the function :

 gluQuadricDrawStyle(GLUquadric *obj, Glenum drawStyle);

 We are offered four possible ways to render the quadrics:

 GLU_FILL

 Solid objects

 GLU_LINE

 Wireframe objects

 GLU_POINT

 Point set

 GLU_SILHOUETTE

 Adjoining edges are not drawn.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

34CGSG – Geometry Primitives

Quadric Shapes ... Properties

 Normals

 Using gluQuadricNormals(GLUQuadricObj *obj,

Glenum normals)

 2nd parameter specifies where to compute the

normals. GLU_NONE, GLU_FLAT, GLU_SMOOTH.

 Using gluQuadricOrientation() we can also specify the

orientation of the normals.

 Textures

 Using gluQuadricTexture(GLUQuadricObj *obj,

Glenum textureCoords) we can decide whether

texture coordinates are generated on the quadric.

 GL_TRUE or GL_FALSE

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

35CGSG – Geometry Primitives

Sphere

 The function call

gluSphere(GLUQuadricObj *obj, Gldouble radius, Glint slices,

Glint stacks)

 Spheres can be drawn as rings of triangles or quads.

 You can think of slices and stacks as the lines of

longitude (vertical) and latitude (horizontal) respectively.

 Clearly the more slices and stacks the smoother the

sphere will be ... Obviously we’ll be defining more points

thus making the sphere more accurate.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

36CGSG – Geometry Primitives

Cylinder

 The function call

gluCylinder(GLUQuadricObj *obj, Gldouble baseRadius,

Gldouble topRadius, Gldouble height, Glint slices, Glint stacks)

 Again cylinders can be drawn as rings of triangles or

quads. 1 quad = 2 triangles.

 You can think of slices and stacks as the lines of

longitude (vertical) and latitude (horizontal) respectively.

 A the topRadius of 0 transfors the cylinder into a cone.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

37CGSG – Geometry Primitives

Disk

 The function call

gluCylinder(GLUQuadricObj *obj, Gldouble baseRadius,

Gldouble topRadius, Gldouble height, Glint slices, Glint stacks)

 Again cylinders can be drawn as rings of triangles or

quads. 1 quad = 2 triangles.

 You can think of slices and stacks as the lines of

longitude (vertical) and latitude (horizontal) respectively.

 A the topRadius of 0 transfors the cylinder into a cone.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

38CGSG – Geometry Primitives

Putting it all together ...

 Let’s have a look at a program which simply creates and

puts together a number of these shapes in order to build

a more complex shape.

 Switch to code::blocks

 It is very important that you realise that I’m using C and

OpenGL just to make sure you understand that the

language we use is irrelevant ... Many (if not all)

computer graphics basic concepts are true irrespective of

the language we use.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

39CGSG – Geometry Primitives

Vertex and Index Buffers

 So far we have not been very efficient with our

declaration of vertices ...

 Using a vertex buffer we can use memory on the GPU to

store vertex information ...

 Then using an index buffer we can describe the topology

of the geometry using the vertices (unique) which are

stored in the VBO.

 This is very similar to what we’ve been doing ... But

instead to sending primitive information to the GPU with

each draw we store that information directly on the GPU.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

40CGSG – Geometry Primitives

A note on terrain generation

 A flat terrain can easily be represented as 2 triangles ...

Everyone would agree.

 But ... How do I create a terrain which is rough?

 Instead of representing my terrain with just 2 triangles I

can represent it (still flat) as 10, 100, 1000, etc triangles.

 Then I can alter the y-coordinate value for each vertex in

order to create a bumpy surface geometry.

 Clearly the higher the number of vertices the higher the

granularity of my terrain.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

41CGSG – Geometry Primitives

Switch to DirectX using XNA

 Let us now take a look at a program (available through

the XNA creators site) which displays primitives.

 So far we have defined the vertices of the torus ... But

that’s only good if we want to just draw the point set

forming the shape.

 We also need to specify how the points are connected

(triangle set) in order to be able to render the geometry

surface.

 Switch to XNA project Primitives3DWindows.

