
Computer Graphics & Simulation Group Department of Computer Science - University of Malta

1CGSG – Viewer Optics

Viewer Optics

Sandro Spina
Computer Graphics and Simulation Group

Computer Science Department
University of Malta

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

2CGSG – Viewer Optics

Viewer Optics

 So far we’ve had a look at points, vectors and matrices

... Which are the primary tools used in CG.

 Optics also plays an important role. After all we need to

render on screen something which is realistic to us.

 Hence, for example, we’ll need to use perspective

because that is how we view things.

 We need to simulate our optics ... while projecting

information of our 3D world scene onto a 2D space.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

3CGSG – Viewer Optics

Projections

 A projection essentially provides a mechanism by which

points in 3D space are mapped onto a 2D plane.

 We shall be deriving two types of projections commonly

used in computer graphics, namely:

 Orthographic Projection

 Perspective Projection

 A projection can also be used (and we’ll be doing this) to

map points from world space into a simple view volume.

 In CG before any rendering takes place, all relevant

objects in the scene must be projected.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

4CGSG – Viewer Optics

Projections as transforms

 All the transforms we have seen so far (scaling,

translation, rotation, shearing) have left the fourth

component, the w-component unaffected.

 Moreover, the bottom row in the 4 x 4 (homogenous

notation) matrix has always been (0 0 0 1). Remember

that we’ve used the first three elements of the 4th column

to represent translation.

 We’ll see how the perspective projection will make use of

this last row.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

5CGSG – Viewer Optics

Orthographic Projection (visual)

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

6CGSG – Viewer Optics

Orthographic Projection

 An orthographic projection is one that maintains parallel

lines (after projection).

 We can easily create a matrix which keeps the x, y

components and zeros (flattens) the z value.

 The following matrix Po, carries out an orthographic

projection on the plane z = 0.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

7CGSG – Viewer Optics

Orthographic Projection

 Clearly after performing the multiplication with Po , we loose all

the depth information.

 Po is thus non-invertible, since its determinant = 0.

 Both +ve and –ve z-values are projected on the plane z = 0.

 It is usually useful (eg. for clipping purposes) to restrict the z, x

and y values to a certain interval (a unit volume) ... This is

done using planes which define a volume in world space.

 Another transformation matrix is utilised to carry out this task.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

8CGSG – Viewer Optics

Orthographic Projection

 Orthographic projection (as a matrix) can also be expressed in

terms of the six-tuple (l, r, b, t, n, f).

 l = Left plane

 r = Right Plane

 b = Bottom Plane

 t = Top Plane

 n = Near Plane

 f = Far Plane

 This matrix scales and translates the volume defined by these

planes with the minimum corner = (l, b, n) and the maximum

corner = (r, t, f) into an AABB centred around the origin.

 This cube (AABB) is referred to as the Canonical View Volume

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

9CGSG – Viewer Optics

Orthographic Projection

 The coordinates in this canonical view volume are

referred to as the normalised device coordinates.

 Whatever geometry lies within this view volume will be

rendered on screen ... The rest is clipped off.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

10CGSG – Viewer Optics

Orthographic Projection

 Note that this matrix Po is invertible …

 (Po)
-1 would be equal to T(-t) S((r-l)/2, (t-b)/2, (f-n)/2)

 Note that since in the Canonical View Volume of DirectX z

spans from 0 to 1 the matrix above would need to

change slightly.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

11CGSG – Viewer Optics

The Pinhole Camera (i)

 When we make use of our photographic equipment we are

carrying out a projection which depends on the lens used.

 The simplest (earliest) form of camera is the pinhole camera

which is useful in order to understand an important projection

concept – perspective.

 We’ve seen that when using an orthographic projection, the

projectors used are all parallel to each other. With perspective

projection, projectors (rays of light) intersect at a point known

as the centre of projection.

 Using a pinhole camera we can easily visualise this point, which

stands in front of the projection plane.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

12CGSG – Viewer Optics

The Pinhole Camera (ii)

 A pinhole camera is a box with a tiny hole on one end.

 Rays of light enter the pinhole camera from this hole (Centre of

Projection) and then hit the opposite end of the box (the projection

plane).

 The image formed is inverted, since the rays of light (travelling in a

‘straight line’) cross as they meet at the pinhole (COP)

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

13CGSG – Viewer Optics

Perspective Projection (i)

 Inspired by the pinhole camera we can derive a much more

useful (for us!!) projection which is the perspective projection.

 As opposed to the orthographic projection, parallel lines are not

parallel after projection; they may actually converge to a single

point at their extreme. (Think of a railway track going into the

screen)

 Perspective projection matches more closely how we perceive

the things around us … the farther away they are the smaller

we see them. Perspective foreshortening.

 We shall start this off by a derivation of a matrix which projects

(using perspective) vertices on a near plane.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

14CGSG – Viewer Optics

Perspective Projection (ii)

 First assume that our viewpoint (camera) is located at

the origin and that we want to project p (above) onto the

projection place z = -d, d > 0

 The new point will be q = (qx, qy, -d)

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

15CGSG – Viewer Optics

Perspective Projection (iii)

 Using the similar triangles in the previous diagram one can infer

that (for the x-component)

 Using a similar derivation we also get the value of qy

 Clearly qz = -d, hence the projection of p on plane –d is given

by the coordinates (-d px/py, -d py/pz, -d)

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

16CGSG – Viewer Optics

Perspective Projection (iv)

 Assume P = (px, py, pz,1) … then multiplying by this

projection matrix gives us the required value Q on the

projection plane after dividing by the w-component.

 The problem (similar to the one we had with orthographic

projection) is that the matrix does not have an inverse …

hence we lose our z-coordinate.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

17CGSG – Viewer Optics

Perspective Projection (v)

 For the perspective projection we shall also derive a

perspective transform matrix which transforms the view

frustum into the canonical view volume.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

18CGSG – Viewer Optics

Perspective Projection Picture

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

19CGSG – Viewer Optics

Perspective Projection (vi)

 Note that (as seen in the prev diagram) the rectangle at z = n (near

plane) has the minimum corner at (l,b,n) and the maximum corner at

(r,t,n)

 These parameters (l,r,b,t,n,f) determine the view frustum of the

camera.

 They also determine the horizontal (angle between l and r) and vertical

(angle between b and t) fields of view.

 When using a narrower field of view (equivalent to zooming in with your

photographic camera) the perpective effect is lessened.

 However increasing the FOV (for eg using a fish eye lens) will make

objects appear distorted.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

20CGSG – Viewer Optics

Perspective Projection (vii)

 The perspective transform matrix that transforms the frustum into a

unit cube is given below:

 After applying this transform to a point we get the projected point by

dividing by the w-component. This gives us the NDC in the view

volume.

 Note that the matrix always sees that the projected point in the view

volume is assigned to +1 when z = f and to -1 when z = n. We’ll check

this out in the next slide.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

21CGSG – Viewer Optics

Perspective Projection (viii)

 Let us take points p = (1, 0, 2), q = (3, 0, 7) and r = (0, 0, 1) and the

near plane to be z=1 and far plane to be z = 7.

 Multiplying p by Pp we get

 Multiplying q by Pp we get

 Multiplying r by Pp we get

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

22CGSG – Viewer Optics

Creating a Camera in DirectX (i)

 Given our knowledge so far we know that we

need at least two matrices to setup our camera.

 Matrix projection;

 Matrix view;

 An InitialiseCamera() method can be setup and used to

initialise your camera before starting to load content.

 To set up the projection matrix we need to first figure out

the aspect ratio (width/height) of the viewport and then

call the CreatePerspectiveFieldOfView() method.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

23CGSG – Viewer Optics

Creating a Camera in DirectX (ii)

 Float aspectRatio =

(float)graphics.GraphicsDevice.Viewport.Width /

(float)graphics.GraphicsDevice.Viewport.Height;

 Matrix.createPerspectiveFieldOfView(MathHelper.PiO

ver4, aspectRatio, 0.0001f, 1000.0f, out projection)

 The variable projection now stores the required

matrix to transform world space vertices into NDC.

 Once projection is done we can then focus on the

view matrix.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

24CGSG – Viewer Optics

Creating a Camera in DirectX (iii)

 The projection matrix defines the ‘lens’ used with

the camera …. Whereas the view matrix will define

the location and orientation of the camera itself.

 The view is what the camera sees.

 XNA will again help us out in coming up with the

matrix … working out the necessary math.

 We’ll use a Matrix helper method,

Matrix.CreateLookAt() in order to specify the view

matrix.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

25CGSG – Viewer Optics

Creating a Camera in DirectX (iv)

 Vector3 cameraPosition = new Vector3(0.0f, 0.0f,

3.0f); //backwards from the origin by 3 units.

 Vector3 cameraTarget = Vector3.Zero;

 Vector3 cameraUpVector = Vector3.Up;

 Matrix.CreateLookAt(ref cameraPosition, ref

cameraTarget, ref cameraUpVector, out view);

 Vector3.Up = (0, 1, 0)

 Note that we are specifically passing everything by

reference (not by value) to gain performance.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

26CGSG – Viewer Optics

Creating a Camera in DirectX (v)

 Even though not part of the camera setup we

clearly also need to setup the world matrix.

 Matrix world = Matrix.Identity; //recall opengl

 The above means that whatever objects I’m

drawing now will neither be rotated, scaled or

translated.

 Matrix.Identity sets the world matrix to the origin of

the world. We now just need to add stuff !!

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

27CGSG – Viewer Optics

XNA Examples ...

 Load the XNA example which demos how to create

a camera component in XNA.

http://farm4.static.flickr.com/3489/3293014

047_51c78a5674.jpg

