

\qquad
\qquad
en

Viewer Optics

- So far we've had a look at points, vectors and matrices ... Which are the primary tools used in CG.
- Optics also plays an important role. After all we need to render on screen something which is realistic to us.
- Hence, for example, we'll need to use perspective because that is how we view things.
- We need to simulate our optics ... while projecting information of our 3D world scene onto a 2D space.

Projections

- A projection essentially provides a mechanism by which points in 3D space are mapped onto a 2D plane.
- We shall be deriving two types of projections commonly used in computer graphics, namely:
- Orthographic Projection
- Perspective Projection
- A projection can also be used (and we'll be doing this) to map points from world space into a simple view volume.
- In CG before any rendering takes place, all relevant objects in the scene must be projected.

Projections as transforms

- All the transforms we have seen so far (scaling, translation, rotation, shearing) have left the fourth component, the w -component unaffected.
- Moreover, the bottom row in the 4×4 (homogenous notation) matrix has always been (0001). Remember that we've used the first three elements of the $4^{\text {th }}$ column to represent translation.
- We'll see how the perspective projection will make use of this last row.

Orthographic Projection (visual)

Orthographic Projection

- An orthographic projection is one that maintains parallel lines (after projection).
- We can easily create a matrix which keeps the x, y components and zeros (flattens) the z value.
- The following matrix Po, carries out an orthographic projection on the plane $z=0$.

$$
P_{o}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Orthographic Projection

- Clearly after performing the multiplication with P_{0}, we loose all the depth information.
- P_{0} is thus non-invertible, since its determinant $=0$.
- Both +ve and -ve z-values are projected on the plane $z=0$.
- It is usually useful (eg. for clipping purposes) to restrict the z, x and y values to a certain interval (a unit volume) ... This is done using planes which define a volume in world space.
- Another transformation matrix is utilised to carry out this task.

Orthographic Projection

- Orthographic projection (as a matrix) can also be expressed in terms of the six-tuple $(1, r, b, t, n, f)$.
- $\quad I=$ Left plane
- $r=$ Right Plane
- $b=$ Bottom Plane
- $t=$ Top Plane
- $n=$ Near Plane
- $f=$ Far Plane
- This matrix scales and translates the volume defined by these planes with the minimum corner $=(1, b, n)$ and the maximum corner $=(r, t, f)$ into an AABB centred around the origin.
- This cube (AABB) is referred to as the Canonical View Volume

Orthographic Projection

- The coordinates in this canonical view volume are referred to as the normalised device coordinates.
- Whatever geometry lies within this view volume will be rendered on screen ... The rest is clipped off.

Orthographic Projection

$$
\left(\begin{array}{cccc}
\frac{2}{r-l} & 0 & 0 & 0 \\
0 & \frac{2}{t-b} & 0 & 0 \\
0 & 0 & \frac{2}{f-n} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & -\frac{l+r}{2} \\
0 & 1 & 0 & -\frac{t+b}{2} \\
0 & 0 & 1 & -\frac{f+n}{2} \\
0 & 0 & 0 & 1
\end{array}\right)=\left(\begin{array}{cccc}
\frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\
0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\
0 & 0 & \frac{2}{f-n} & -\frac{f+n}{f-n} \\
0 & 0 & 0 & 1
\end{array}\right)
$$

- Note that this matrix P_{0} is invertible ...
- $\left(P_{0}\right)^{-1}$ would be equal to $T(-t) S((r-l) / 2,(t-b) / 2,(f-n) / 2)$
- Note that since in the Canonical View Volume of DirectX z spans from 0 to 1 the matrix above would need to change slightly.

The Pinhole Camera (i)

- When we make use of our photographic equipment we are carrying out a projection which depends on the lens used.
- The simplest (earliest) form of camera is the pinhole camera which is useful in order to understand an important projection concept - perspective.
- We've seen that when using an orthographic projection, the projectors used are all parallel to each other. With perspective projection, projectors (rays of light) intersect at a point known as the centre of projection.
- Using a pinhole camera we can easily visualise this point, which stands in front of the projection plane.

The Pinhole Camera (ii)

- A pinhole camera is a box with a tiny hole on one end.
- Rays of light enter the pinhole camera from this hole (Centre of Projection) and then hit the opposite end of the box (the projection plane).
- The image formed is inverted, since the rays of light (travelling in a 'straight line') cross as they meet at the pinhole (COP)

Perspective Projection (i)

- Inspired by the pinhole camera we can derive a much more useful (for us!!) projection which is the perspective projection.
- As opposed to the orthographic projection, parallel lines are not parallel after projection; they may actually converge to a single point at their extreme. (Think of a railway track going into the screen)
- Perspective projection matches more closely how we perceive the things around us ... the farther away they are the smaller we see them. Perspective foreshortening.
- We shall start this off by a derivation of a matrix which projects (using perspective) vertices on a near plane.

Perspective Projection (ii)

projection plane, $z=-d$

- First assume that our viewpoint (camera) is located at the origin and that we want to project \mathbf{p} (above) onto the projection place $z=-d, d>0$
- The new point will be $q=\left(q_{x}, q_{y},-d\right)$

Perspective Projection (iii)

- Using the similar triangles in the previous diagram one can infer that (for the x-component)

$$
\frac{q_{x}}{p_{x}}=\frac{-d}{p_{z}} \quad \leftrightarrow \quad q_{x}=-d \frac{p_{x}}{p_{z}}
$$

- Using a similar derivation we also get the value of q_{y}

$$
\frac{q_{y}}{p_{y}}=\frac{-d}{p_{z}} \quad \leftrightarrow \quad q_{y}=-d \frac{p_{y}}{p_{z}}
$$

- Clearly $q_{z}=-d$, hence the projection of p on plane $-d$ is given by the coordinates $\left(-d p_{x} / p_{y},-d p_{y} / p_{z},-d\right)$

Perspective Projection (iv)

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -1 / d & 0
\end{array}\right)\left(\begin{array}{c}
p_{x} \\
p_{y} \\
p_{z} \\
1
\end{array}\right)=\left(\begin{array}{c}
p_{x} \\
p_{y} \\
p_{z} \\
-p_{z} / d
\end{array}\right) \rightarrow\left(\begin{array}{c}
-d p_{x} / p_{z} \\
-d p_{y} / p_{z} \\
-d \\
1
\end{array}\right)
$$

- Assume $P=\left(p_{x}, p_{y}, p_{z}, 1\right)$... then multiplying by this projection matrix gives us the required value Q on the projection plane after dividing by the w-component.
- The problem (similar to the one we had with orthographic projection) is that the matrix does not have an inverse ... hence we lose our z-coordinate.

Perspective Projection (V)

- For the perspective projection we shall also derive a perspective transform matrix which transforms the view frustum into the canonical view volume.

Perspective Projection Picture
+

- 믈
\qquad

$$
\operatorname{lec}_{2}
$$ -

$\overline{2}$

Perspective Projection (vi)

- Note that (as seen in the prev diagram) the rectangle at $\mathrm{z}=\mathrm{n}$ (near plane) has the minimum corner at ($1, \mathrm{~b}, \mathrm{n}$) and the maximum corner at (r, t, n)
- These parameters ($1, r, \mathrm{~b}, \mathrm{t}, \mathrm{n}, \mathrm{f}$) determine the view frustum of the camera.
- They also determine the horizontal (angle between I and r) and vertical (angle between b and t) fields of view.
- When using a narrower field of view (equivalent to zooming in with your photographic camera) the perpective effect is lessened.
- However increasing the FOV (for eg using a fish eye lens) will make objects appear distorted.

Perspective Projection (vii)

- The perspective transform matrix that transforms the frustum into a unit cube is given below:

$$
\boldsymbol{P}_{\boldsymbol{p}}=\left(\begin{array}{cccc}
\frac{2 n}{r-l} & 0 & -\frac{r+l}{r-l} & 0 \\
0 & \frac{2 n}{t-b} & -\frac{t+b}{t-b} & 0 \\
0 & 0 & \overline{f+n} & -\frac{2 f n}{f-n} \\
0 & 0 & 1 & 0
\end{array}\right)
$$

- After applying this transform to a point we get the projected point by dividing by the w-component. This gives us the NDC in the view volume.
- Note that the matrix always sees that the projected point in the view volume is assigned to +1 when $z=f$ and to -1 when $z=n$. We'll check this out in the next slide.

Perspective Projection (viii)

- Let us take points $p=(1,0,2), q=(3,0,7)$ and $r=(0,0,1)$ and the near plane to be $z=1$ and far plane to be $z=7$.
- Multiplying p by P_{p} we get

$$
\begin{aligned}
& \left(\begin{array}{c}
\frac{2 n}{r-l}-2\left(\frac{r+l}{r-l}\right) \\
-2\left(\frac{t+b}{t-b}\right) \\
2\left(\frac{8}{6}\right)-\frac{7}{6} \\
2
\end{array}\right) "\left(\begin{array}{c}
\frac{2 n}{r-l}-2\left(\frac{r+l}{r-l}\right) \\
-2\left(\frac{t+b}{t-b}\right) \\
0.333 \\
2
\end{array}\right) "\left(\begin{array}{c}
\frac{2 n}{r-l}-2\left(\frac{r+l}{r-l}\right) \\
-2\left(\frac{t+b}{t-b}\right) \\
0.166 \\
1
\end{array}\right) \\
& \left(\begin{array}{c}
\frac{2 n}{r-l}-2\left(\frac{r+l}{r-l}\right) \\
-2\left(\frac{t+b}{t-b}\right) \\
7\left(\frac{8}{6}\right)-\frac{14}{6} \\
7
\end{array}\right) »\left(\begin{array}{c}
\frac{2 n}{r-l}-2\left(\frac{r+l}{r-l}\right) \\
-2\left(\frac{t+b}{t-b}\right) \\
7 \\
7
\end{array}\right) \geqslant\left(\begin{array}{c}
\frac{2 n}{r-l}-2\left(\frac{r+l}{r-l}\right) \\
-2\left(\frac{t+b}{t-b}\right) \\
1 \\
1
\end{array}\right) \\
& \left(\begin{array}{c}
\frac{2 n}{r-l}-2\left(\frac{r+l}{r-l}\right) \\
-2\left(\frac{t+b}{t-b}\right) \\
\left(\frac{8}{6}\right)-\frac{14}{6} \\
1
\end{array}\right) »\left(\begin{array}{c}
\frac{2 n}{r-l}-2\left(\frac{r+l}{r-l}\right) \\
-22\left(\frac{t+b}{t-b}\right) \\
-1 \\
1
\end{array}\right) "\left(\begin{array}{c}
\frac{2 n}{r-l}-2\left(\frac{r+l}{r-l}\right) \\
-2\left(\frac{t+b}{t-b}\right) \\
-1 \\
1
\end{array}\right)
\end{aligned}
$$

Creating a Camera in DirectX (i)

- Given our knowledge so far we know that we need at least two matrices to setup our camera.
- Matrix projection;
- Matrix view;
- An InitialiseCamera() method can be setup and used to initialise your camera before starting to load content.
- To set up the projection matrix we need to first figure out the aspect ratio (width/height) of the viewport and then call the CreatePerspectiveFieldOfView() method.

Creating a Camera in DirectX (ii)

- Float aspectRatio =
(float)graphics.GraphicsDevice.Viewport.Width / (float)graphics.GraphicsDevice.Viewport.Height;
- Matrix.createPerspectiveFieldOfView(MathHelper.PiO ver4, aspectRatio, 0.0001f, $1000.0 f$, out projection)
- The variable projection now stores the required matrix to transform world space vertices into NDC.
- Once projection is done we can then focus on the view matrix.

Creating a Camera in DirectX (iii)

- The projection matrix defines the 'lens' used with the camera Whereas the view matrix will define the location and orientation of the camera itself.
- The view is what the camera sees.
- XNA will again help us out in coming up with the matrix ... working out the necessary math.
- We'll use a Matrix helper method, Matrix.CreateLookAt() in order to specify the view matrix.

Creating a Camera in DirectX (iv)

- Vector3 cameraPosition = new Vector3(0.0f, 0.0f, 3.0f); //backwards from the origin by 3 units.
- Vector3 cameraTarget = Vector3.Zero;
- Vector3 cameraUpVector = Vector3.Up;
- Matrix.CreateLookAt(ref cameraPosition, ref cameraTarget, ref cameraUpVector, out view);
- Vector3. $\mathrm{Up}=(0,1,0)$
- Note that we are specifically passing everything by reference (not by value) to gain performance.

Creating a Camera in DirectX (v)

- Even though not part of the camera setup we clearly also need to setup the world matrix.
- Matrix world = Matrix.Identity; //recall opengl
- The above means that whatever objects I'm drawing now will neither be rotated, scaled or translated.
- Matrix.Identity sets the world matrix to the origin of the world. We now just need to add stuff !!

\qquad

