
Computer Graphics & Simulation Group Department of Computer Science - University of Malta

1CGSG – An Introduction to Sprites

Sprites

Sandro Spina 
Computer Graphics and Simulation Group

Computer Science Department
University of Malta



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

2CGSG – An Introduction to Sprites

2D Graphics

 In 3D graphics one usually create a scene (in 3D space) 

then somehow generates (projects) a 2D representation 

of it on the screen (viewport) 

 However if we do not need to represent anything in 3D 

we can directly use 2D (flat) objects ... such as sprites.

 It would be like playing a board game (or tablesoccer, 

subbuteo, whatever ... ) on the surface of a table and 

having a camera directly above it pointing in a 

perpendicular direction towards the table.  



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

3CGSG – An Introduction to Sprites

XNA – the game loop

 Initialize()

 Variables etc.,

 LoadContent()

 Loading of images, sprites, models, sound, etc

 Update()

 Game logic, send data over network, etc ... 

 Draw()

 Of course you draw your stuff here ....



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

4CGSG – An Introduction to Sprites

XNA – the game loop



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

5CGSG – An Introduction to Sprites

Sprites 

 A sprite is essentially an image file (png, jpg, 

bmp, etc.), which ideally has a transparent 

background.

 It is represented as a 2D texture within XNA.

 Its properties are:

 Position :: Vector2D

 Rectangle in source image :: Rectangle

 Check Example ... 



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

6CGSG – An Introduction to Sprites

Content Pipeline

 The XNA framework helps you out in loading 

different content into your game such as 

Textures and Fonts.

 You’ll find it in the Solution Explorer of VS 

Express.

 Content.Load<Texture2D>("spaceship");

 Use Transparent images (png)



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

7CGSG – An Introduction to Sprites

Sprite Rotation ... 

 Let’s assume that we’re creating a 2D asteroids game. 

You’ll need rotation in order to be able to have your 

spaceship fire in all possible directions.  Remember we 

are in outer space so our aircraft can rotate 360deg to 

shoot the asteroids.

 Sprites rotate around their origin ... but

 ‘Problem’ is that by default 0,0 in the local coordinate 

system of the sprites is the top left corner of the sprite.

 Solution (trivial) is that when we rotate we need to 

move the origin to the centre of the sprite. In XNA you 

need to set the pivot when creating the sprite.



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

8CGSG – An Introduction to Sprites

Sprite Sheets

 Used to add animations to sprites ... 

 ...using essentially the same 

techniques of a cartoon flipbook

 Check Prince of Persia example ... 

 Check Three Rings example ...

 Check the code in XNA on how to loop 

through the 2Dtexture.



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

9CGSG – An Introduction to Sprites

SpriteBatch Properties (i)

 You’ll probably have one SpriteBatch object for 

your game in which you will draw all your 2D 

images.

 SpriteBlendMode

 None: No blending of colours

 AlphaBlend: Alpha values are blended. This 

is the default which enables transparencies.

 Additive: sprite colours are blended in to 

the background colours.



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

10CGSG – An Introduction to Sprites

SpriteBatch Properties (ii)

 SpriteSortMode (Defines the sorting options of 

rendered sprites)

 Deferred: sprites are not drawn until 

SpriteBatch.End() is called. 

 Immediate: the Begin call immediately sets the 

graphics device settings and new Draw calls are 

immediately drawn.

 Texture: same as Deferred, but sprites are sorted by 

texture before being drawn.

 BackToFront: same as Deferred, but sprites are 

ordered in front-to-back order based on layer depth

 FrontToBack: inverse of the above mode (Check 

example with the game background)



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

11CGSG – An Introduction to Sprites

SpriteBatch Properties (iii)

 Another useful function within SpriteBatch is 

DrawString() which takes as parameters the string you 

want to display, the font, the coordinates where to 

display)

 You can use this function to display scores. Or when 

someone is hit the information is displayed on all the 

clients (for eg. In multiplayer mode).

 You can also use it to display messages between 

clients.



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

12CGSG – An Introduction to Sprites

Moving Around ...

 We’ve seen that sprites have a location (Vector2D) which 

determines where on the window frame they are drawn.

 In order to create movement we trivially need to update 

(in the update() method) with every frame drawn.

 Let’s consider ‘movement’ scenarios in the game of 

asteroids .... 

 We could have either:

 Automatic: Asteroids move on their own

 User Controlled: You control you spaceship



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

13CGSG – An Introduction to Sprites

... And following a vector

 Conceptually one can think of movement in a straight line 

simply as the task of following a vector’s direction. 

 Location (0,0) is at the top left corner of the window frame.

 The Vectors (1,0) and (0,1) define what?

 If you take them as positions (1,0) this only means one pixel to 

the right from (0,0) ...



 Speed can be encoded as simply the amount of pixels covered 

per frame (pixels/sec instead of metres/second)



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

14CGSG – An Introduction to Sprites

User Input ... For Asteroids

 Arrow Keys can be used to control the 

direction (rotation) of the spaceship 

(sprite) .... 

 Up key can be used to thrust forward

 ... space to fire the missiles !!!

 Check example code 



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

15CGSG – An Introduction to Sprites

User Input ... Acceleration !

 In outer space a space ship has thrust .... but 

no brakes!!!

 The implication of this is that the ship does not 

stop immediately but depending on the value of 

its thrust

 This can be encoded (in a simplified way) by 

thinking of thrust as increasing acceleration ... 



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

16CGSG – An Introduction to Sprites

User Input ... Acceleration !

 We can rotate our space ship without thrusting 

forward.

 This is very useful when you are trying to 

evade your enemy and at the same time trying 

to fire in his direction.

 Therefore .... Direction = last direction in which 

thrust was applied. Rotation alone does not 

change the direction of where you spaceship is 

heading.



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

17CGSG – An Introduction to Sprites

Checking the Frame Rate 

 Irrespective of whether you are using a GTX280 card or a 

meagre ATI X1270 (my laptop!!) card the experience (in terms 

of frame rates) should ‘ideally’ be similar.  Especially true with 

network games.

 By default XNA runs at 60 FPS ... However you might want to 

animate you sprite sheet at 30FPS.

 You can fix the frame rate (animation speed perhaps is a better 

word) by using the GameTime parameter which is passed 

between each Update() and Draw() call.

 Also if you think your graphics card is not up to scratch you can 

check that out by checking the Boolean property 

IsRunningSlowly of the GameTime object.



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

18CGSG – An Introduction to Sprites

Many Sprites = an OO design

 In any programming that you do (including games 

programming) you need to structure you code !!!! 

 In the case of the Asteroids game ... you need to cater 

for your ship + opponent ships (amongst other things)

 Asteroids and bullets !!!!

 Therefore .... You need a good OO design in order to get 

everything running smoothly.

 You basically need to create a Sprite Hierarchy + a Sprite 

Manager



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

19CGSG – An Introduction to Sprites

OO Design with a Sprite Manager

 A Sprite Manager is used to load content, call 

updates and draws of the different sprites. 

UserManaged

SpaceShip

Autonomous

Asteroid BasicBullet



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

20CGSG – An Introduction to Sprites

XNA Help ... GameComponent class

 The XNA framework provides you with a nice feature that 

will help you out design your game.

 The GameComponent class essentially is used to 

integrate different logical pieces of code into your 

application.

 In simple terms, this class allows you to modularly plug 

any code into your application and automatically wires 

that component into the game loop!!

 Game.Compontents.Add(new Ship());



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

21CGSG – An Introduction to Sprites

... DrawableGameComponent class

 This is essentially like the GameComponent but ... 

 In addition to the wiring of the initiaze()  and update() 

methods in the game loop you also get the draw() 

method.

 In the case of Asteroids, I’m using this class because I 

want the SpriteManager to take care of drawing the 

sprites (all of them).

 In the initial game class when you create the instance of 

the SpriteManager (or any other GameComponent) don’t 

forget to add it to the Components list :

 Components.Add(spriteManager);



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

22CGSG – An Introduction to Sprites

Missile Handling ...

 Design option ... but one possibility (amongst others)

 Is that each spaceship handles the drawing of missile 

fired.

 The missiles themselves then handle their lifetime ... 

Asking themselves ... Can I still hit something of have I 

run out of luck (screen space)

 Check the code for the SpaceShip + Missile sprites ...

 Really there are many alternatives. It’s up to you.



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

23CGSG – An Introduction to Sprites

Randomness Factor

 In order to be an enjoyable game you need to put in 

some randomness factor ....

 In my case I’ve added random directions for the 

asteroids.

 This is given by using a random initial rotation

 And random speeds to the asteroids as well.

 This is given in the asteroid constructor:

 asteroidVelocity = _maxVelocity * rand.Next(1,20);

 Originally there’s also a random component in the size of the asteroids. 

I have not implemented that but it’s easy to do following what we’ve 

already seen. Maybe it’s more correct to talk about the ‘ probability of ‘



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

24CGSG – An Introduction to Sprites

Rotations and Scaling

 When drawn sprites can be rotated and scaled ...

 In my implementation the spaceship is scaled by 0.16f

 Rotation is a floating number which is used to orient the 

spaceship ... However when we change the rotation we 

must make sure that the direction (after pressing thrust) 

changes as well!!

 Use can use sin(rotation) and cos(rotation) to get the x 

and y components of the direction.

 Check the code ....



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

25CGSG – An Introduction to Sprites

Asteroids Game – Collisions

 When using sprites it is usually important to determine 

the occurrence of a collision between entities in you app.

 For eg. collisions in our game can occur between:

 Spaceship and Spaceship

 Spaceship and Asteroid

 Spaceship and Missile

 Missile and Asteroid

 Missile and Spaceship

 If an asteroid hits another asteroid nothing happens ...

 If an bullet hits another bullet nothing happens ...



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

26CGSG – An Introduction to Sprites

Handling Collision Detection

 In general, collision detection is the process of checking 

whether certain objects in your game have collided with 

other objects.

 Algorithms to do this can range from very simplistic to 

very complex.

 A combination of easy and hard collision detection 

algorithms is usually used, where the easy (less 

expensive) algorithm is used to check for intersection ... 

And if this reports True the finer (more compute 

intensive) and more accurate algorithm (per-pixel 

checking for eg) is then used.



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

27CGSG – An Introduction to Sprites

Handling Collision Detection

 The basic algorithm involves looping through all 

the objects to check whether there are any 

collisions.

 This is obviously expensive. A better alternative 

would be to subdivide the space (2D in our 

case) and check only certain portions of the 

screen.

 In this game I’m simply using lists to store the 

objects but one can opt to use more efficient 

data structures (trees for example)



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

28CGSG – An Introduction to Sprites

Distance between two points

 In order to determine whether two objects 

have collided I can checked the distance 

between the centres of the two objects which is 

equal to sqrt((x1-x2)2 + (y1-y2)2)

 Now I need to use a bounding area over my 

objects ... A circle of a rectangle. 

 This will depend on the objects in the game ... 

If you want to check a ball for collision 

detection with something then use a circle.



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

29CGSG – An Introduction to Sprites

Bounding Circles

 In Asteroids we would know the radius of the bounding 

circles ... We know these will not change during game 

play so we don’t need to calculate the radius each time. 

It can be a constant for every object.

 Trivially two objects collide if r1 + r2 > D

 Probably more efficient using r12+r22 > D2

 R1=radius of circle surrounding obj1

 R2=radius of circle surrounding obj2

 D=distance between centres of objects



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

30CGSG – An Introduction to Sprites

Bounding Rectangles

 This is what I’ve used in my implementation.

 At every iteration of the game loop calculate the 

bounding rectangles of everything

 Spaceships

 Asteroids

 Missiles

 Bonuses

 Then check for intersections between these 

rectangles. 

 XNA provides a BoundingRectangle class with an 

intersection test method.



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

31CGSG – An Introduction to Sprites

Bounding Areas Precision

 In most of the cases there won’t exist a geometric shape that 

will tightly fit your objects ....

 Therefore there’s always the possibility of collision when in 

reality the objects do not collide.

 With Sprites one can improve on that by taking advantage of 

the image format of the texture which is usually a transparent 

image file (for ex png)

 When a collision is detected you can check whether the alpha 

component of the intersection pixels is equal to 0.

 This increases the overheads but gives you a more accurate 

collision detection algorithm  



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

32CGSG – An Introduction to Sprites

A Particle System (Simple) using Sprites

 Using sprites we can simulate a basic (but very effective in 

terms of visuals) particle system.

 Particle systems are generally used to simulate smoke, fire, 

flowing water (fountains), clouds, etc ...

 The basic idea to have a set of particles (sprites for this case) 

and animate them according to certain properties .... 

 For example trying to simulate a particular wind direction ...

 Hence particles for us will be 2DTexture objects which we’ll 

translate, rotate and scale across the screen.



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

33CGSG – An Introduction to Sprites

Sprite properties ... To represent particles ...

 We need to define a core set of particle properties which we’ll 

update with every frame.

 Moreover we need make use of the alpha channel of our 

2DTexture objects in order to properly render (i.e. make 

realistic) the particle effects.

 Recall the alpha blending properties of texture namely:

 Additive, add values of pixels.

 AlphaBlend, use the underlying colour according to the alpha value of this 

pixel.

 These two properties are used to realistically render the 

particle effect when using sprite images. 



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

34CGSG – An Introduction to Sprites

Sample Textures for Smoke and Explosion



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

35CGSG – An Introduction to Sprites

Rendering using the SpriteBatch ...

 public void Draw ( Texture2D texture, Vector2 position, Nullable<Rectangle> 

sourceRectangle, Color color, float rotation, Vector2 origin, Vector2 scale, 

SpriteEffects effects, float layerDepth )

 texture. The sprite 

 texture.position. The location, in screen coordinates, where the sprite will be drawn.

 sourceRectangle. A rectangle specifying, in texels, which section of the rectangle to 

draw. Use null to draw the entire texture.

 color. The color channel modulation to use. Use White for full color with no tinting.

 rotation. The angle, in radians, to rotate the sprite around the origin.

 origin. The origin of the sprite. Specify (0,0) for the upper-left corner.

 scale. Vector containing separate scalar multiples for the x- and y-axes of the sprite.

 effects. Rotations to apply before rendering.

 layerDepth. The sorting depth of the sprite, between 0 (front) and 1 (back). You must 

specify either FrontToBack or BackToFront for this parameter to affect sprite drawing.



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

36CGSG – An Introduction to Sprites

Check Particle System Example

 Switch to Visual Studio Express and check the Project ParticleSampleWindows

 You can download this project from the XNA web site ...

 We shall look at this example and vary a number of parameters in order to 

understand how this effect works.

 Particle effects are not difficult to implement and can make a huge difference with 

the visuals of your application (game) ... 

 Let’s say you’ve the asteroids implementation we say last week ... You can try to 

combine the explosion (and smoke) effects into that game when the missiles hit 

the asteroids. 

 This is all we’ll cover on sprites ... As a final note about the SpriteBatch class you 

should know that this class encapsulates a vertex/pixel shader (like the 
BasicEffect class) which we’ll be discussing (shaders) in a couple of weeks time. 


