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What is a transform?

 A transform is an operation on points and vectors, and 

converts them in some pre-determined way.

 With transforms we can position, reshape and animate 

objects(set of points), lights (vectors), and cameras 

(vectors)

 Using matrices we can also project objects into a plane in 

different ways.

 Transforms are expressed as matrices.
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Linear Transforms

 A linear transform is one that preserves vector addition

and scalar multiplication.

 f(x) + f(y) = f(x + y) Addition

 kf(x) = f(kx) Multiplication

 For eg. the scaling function f(x) = 5x takes a vector x

and multiplies (all components) by 5. It is linear since the 

result of adding two vectors then multiplying them will be 

the same as first multiplying the two vectors then adding 

them. 
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Linear Transforms (ii)

 Scaling and rotation are both linear.

 The scaling and rotation transforms, which transform a 3-

element vector, can be represented using a 3x3 matrix.

 However a function such as f(x) = x + (7,3,2) is not 

linear.

 f(x+(7,3,2)) + f(y+(7,3,2)) ≠  f((x + y) + (7,3,2))

 However it would be useful if we could combine scaling 

and rotation with translation …. 
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Affine Transforms

 In order to combine linear transforms with translation, 

affine transforms are used.

 An affine transform is a combination of a linear transform 

followed by a translation transform.

 The main characteristic of an affine transform is that it 

preserves parallel lines, but not necessarily lengths and 

angles.

 These transforms will be represented as 4 x 4 matrices 

using what is referred to as homogenous notation.
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Homogenous Notation (i)

 Recall that, a point describes a location in 

space, whereas a vector describes a direction 

and has no location.

 Also using 3 x 3 matrices we can perform linear 

transformations such as rotations, scaling and 

shearing on coordinates.

 As we’ve already seen translation is not linear 

… hence cannot be performed using these 

matrices.
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Homogenous Notation (ii)

 This problem in not important for vectors, since these do 

not represent a particular location (translation has no 

meaning), however translation is very important for 

points (for obvious reasons).

 The use of homogenous notation (as we shall see) allows 

us to incorporate translation (for points) in our matrices, 

i.e. using this notation we are able to represent affine 

transforms.

 We basically need to augment our 3x3 matrices (in the 

case of 3D) by one dimension to 4 x 4 matrices.
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Homogenous Notation (iii)

 A homogenous vector is represented as follows:

p = (px, py, pz, pw)

 In the case of points pw is equal 1 and in the case of 

vectors pw is equal to 0.

 When pw is not equal to either 1 or 0, then the actual 

point (px, py, pz) is calculated through homogenization, 

where all components are divided by pw 

 P is then equal to (px/pw, py/pw, pz/pw, 1)
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Homogenous Notation (iv)

 The following represents how a 3 x 3 matrix M 

is augmented into the homogenous form: 

 Rotation, scaling and shear matrices can replace M in this 

matrix, whereas all translation operations use the 

additional elements of the augmented matrix. We shall 

now see how to represent these transformations in the 

matrix above.
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Homogenous Notation (v)

 Using homogenous notation we will be able to carry out 

more general affine transforms that contain translation 

such as:

 Rotation about an axis that does not pass through the origin

 Scale about a plane that does not pass through the origin

 Reflection about a plane that does not pass through the origin

 We’ll first have a look at the ‘standard’ transformation 

about the origin, but keep in mind that we could always 

first translate the ‘centre’ of the transformation to the 

origin, perform the linear transformation then translate 

back to the original position.  Essentially performing the 

transformation TRT-1.
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Orthogonal Matrices (Recall)

 A square matrix M, with only real elements, is orthogonal 

if and only if MMT = MTM = I  

 This means that the transpose of M is equal to the 

inverse of M , i.e. M-1 = MT

 The standard basis is orthonormal, since the 

basis vectors are orthogonal to each other and 

of length one. Representing this basis as a 

matrix E = (ex ey ez) = I, gives us an 

orthogonal matrix. 
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Transforms Classification

 We can classify transforms as being either affine, 

orthogonal or both.

 Translation matrix (moves a point) is affine.

 Rotation matrix (rotates a set number of radians about 

an axis (x,y or z)) is both orthogonal and affine. Since it’s 

orthogonal than it’s inverse is simple to calculate as MT

 Scaling matrix is affine.

 Shearing matrix is affine.
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Translation Transform (visual)

Image from Tomas Akenine-Moeller RTR book .. This chapter is mostly based

On the transform chapter in this book.
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Translation Transform (ii)

 A translation transform T(t) represented by the matrix T,

moves a point from one location to another according to 

a vector t = (tx, ty, tz)

 Note that the multiplication of a point p with a matrix 

transform T(t), results in a new point p’ equal to (px + tx, 

py + ty, pz + tz)

 The inverse T-1(t) is equal to T(-t).
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Rotation Transform (visual)
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Rotation Transform (i)

 A rotation transform R(θ) represented by the matrix R,

rotates a point or a vector by a given angle θ, around a 

given axis passing through the origin.

 Like translation, rotation is a rigid-body transform, 

meaning that it preserves the distance between all points 

transformed and preserves handedness.

 Commonly used rotation matrices include :

 Rx(θ)   : rotate around the x-axis

 Ry(θ) : rotate around the y-axis

 Rz(θ) : rotate around the z-axis
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Rotation Transform (ii)
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Rotation Transform (iii)

 All rotation matrices have a determinant of one and are 

thus orthogonal. This also holds for concatenations of 

rotation matrices.

 Any arbitrary axis rotation can be represented as a series 

of transform around the standard basis.

 We shall also describe a way by which we shall be able to 

rotate points and vectors around an arbitrary axis 

directly.

 Ri
-1(θ) = Ri(-θ)
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Rotation Transform (example)

 Assume that we want to rotate an object by θ radians around the z-

axis, with the centre of rotation being a certain point p. What does this 

transform look like?

 We first need to translate the point p so that it lies on the origin of the 

coordinate system using the transform T(-p)

 Once the point is on the origin we can rotate by θ radians along the z-

axis using the transform Rz(θ).

 Finally we translate everything back by T(p)

 Therefore the resulting transformation X is equal to:

 T(p) Rz(θ) T(-p)                    pay attention to the order
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Scaling Transform (i)

 Suppose I have an object (box) in my scene and I want 

to increase or decrease its size … I would need to apply a 

scaling transform to all the points which make up the 

box. 

 A scaling matrix S(s) = S(sx, sy, sz) scales an entity with 

factors sx, sy, and sz along the x, y and z directions 

respectively. Scaling might not be uniform …
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Scaling Transform (ii)

 We can also scale using cell (4,4) in our homogenous 

notation … and using homogenization.

 Divisions are usually quite inefficient therefore the first 

method is usually preferred, unless division is always 

performed un which case there is no extra cost
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Scaling Transform (Reflection)

 In the case that one of the values in the scaling vector is 

negative then we are performing a reflection transform 

(or mirror).

 Which could be problematic since a reflection of points 

could change from clockwise to counterclockwise ordering 

of the points in a triangle … (we still need to check this 

out in later material)

 In any case it is important to detect whether a given 

matrix reflects in some manner. This can be done by 

checking whether the determinant of the 3 x 3 matrix is 

negative. If it is then we have a reflective matrix.
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Shearing Transform (visual)
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Shearing Transform (i)

 Shearing transforms are mainly used to create distortion.

 There are six basic shearing matrices denotes by :

 Hxy(s) Hxz(s)

 Hyx(s) Hyz(s)

 Hzx(s) Hzy(s)

 The first parameter denotes which coordinate is being 

changed by the shear matrix, whereas the second 

denotes the coordinate which does the shearing.



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

25CGSG – Transforms

Shearing Transform (ii)

 One of the shearing matrices is shown below:

 S is a scalar quantity … the effect of multiplying point p

with the above is 

(px + spz, py, pz)
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Concatenation of Transforms

 Composition of transforms is very important because we 

usually want to represent a series of transformations in 

one matrix. Mainly for efficiency reasons.

 However the way (or rather order) we use to compose 

(concatenate) them together is very important.

 Recall that the multiplication operator on matrices is non-

commutative. 

 Concatenation (or composition) of transforms is thus said 

to be order-dependent.  
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Concatenation of Transforms

 Important to remember is that if we want to first scale a 

point then rotate it then translate it we need to 

concatenate the matrices as follows: (T(R(S(p))))
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Rigid Body Transform

 A transform consisting only of translations and rotations 

is referred to as a rigid body.

 This means that the relation between all the points 

composing an object which is transformed are maintained 

after the transform.

 The inverse of a rigid body transform X = T(t) R, is equal 

to the transform X-1 = R-1 T(t)-1 = RT T(-t)

 Rigid body transforms are many times used in physics 

engines in order to create physically based animations.
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Normal Transform

 Matrices are used to transform many entities in CG 

including points, vectors, geometry, etc

 However attention need to be gmade when transforming 

the surface normals ... Check what happens in the 

diagram below.

 The proper method 

is to multiply by the 

transpose of the 

adjoint .. Derivation 

follows.
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Normal Transform (Derivation)

 Take N to be the surface normal at a point P

 Take Q to be a point tangential to point P (T = Q - P)

 This means that N . T = 0 i.e. NT * T = 0

 Take M to be the transform matrix applied to P and Q, i.e. P’ = 

M * P and Q’ = M * Q

 The new tangent vector T’ = P’ – Q’ = M * Q – M * P

 Which is equal to M * (Q – P) = M * T

 Now define N’ to be the new normal in the transformed space 

of P’ and Q’, thus (N’)T * T’ = 0

 Define R to be the matrix which transforms the normal N to N’

 Then we have, 0 = (N’)T * T’ = (R * N)T * T’ = (NT * RT) * (M * 

T) = NT * (RT * M) * T

 Since we know that NT * T = 0 … we have RT * M = 0 which 

leads to RT = M-1 and finally to R = (M-1 )T
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Euler Transforms (i)

 The Euler transform is essentially an intuitive way of 

specifying orientation …

 Many times it’s used to specify the direction and 

orientation a camera is looking at.

 It’s name comes from the Swiss mathematician Leonhard 

Euler (1707-1783)

 The transform is also used regularly in flight simulators … 

 The transform is basically a sequence of rotations.
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Euler Transforms (ii)
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Euler Transforms (i)

 E(h, p, r) = Rz(r) Rx(p) Ry(h)

 E is a concatenation of rotations along the basis axes. 

This makes E orthogonal.

 Therefore the E-1 = ET

 h, p and r represent the amount of rotation around their 

respective axes.

 This transform is available in many Graphics APIs.
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Gimbal Lock ...
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Gimbal Lock ... example

 Let’s take an example where two axial systems are 

mutually aligned. 

 After a roll (z-axis) of 45deg we get

the alignment shown here … 

 After a pitch (x-axis) of 90deg we get

the alignment shown here …

 Now if we carry out a yaw of 45deg (y-axis) we

would align back X’ and X thus counteracting

the effect of the original yaw !!
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Rotation (with respect to an arbitrary vector)
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Change of Basis

 Suppose we want to express a vector v in a basis which 

is different from the one it is currently defined in (such as 

for example the standard x,y,z basis)

 Let’s say we have vector v, described by the coordinate 

axes ex, ey, ez and we also have another coordinate 

system described by the arbitrary basis vectors fx, fy, fz.

 If w is v expressed in basis F then we have:

 Fw = ( fx, fy, fz ) w = v

 w = F-1 v

 If F is orthogonal then w = FT v


