
Computer Graphics & Simulation Group Department of Computer Science - University of Malta

1CGSG – Transforms

Transformations ...

Sandro Spina
Computer Graphics and Simulation Group

Computer Science Department
University of Malta

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

2CGSG – Transforms

What is a transform?

 A transform is an operation on points and vectors, and

converts them in some pre-determined way.

 With transforms we can position, reshape and animate

objects(set of points), lights (vectors), and cameras

(vectors)

 Using matrices we can also project objects into a plane in

different ways.

 Transforms are expressed as matrices.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

3CGSG – Transforms

Linear Transforms

 A linear transform is one that preserves vector addition

and scalar multiplication.

 f(x) + f(y) = f(x + y) Addition

 kf(x) = f(kx) Multiplication

 For eg. the scaling function f(x) = 5x takes a vector x

and multiplies (all components) by 5. It is linear since the

result of adding two vectors then multiplying them will be

the same as first multiplying the two vectors then adding

them.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

4CGSG – Transforms

Linear Transforms (ii)

 Scaling and rotation are both linear.

 The scaling and rotation transforms, which transform a 3-

element vector, can be represented using a 3x3 matrix.

 However a function such as f(x) = x + (7,3,2) is not

linear.

 f(x+(7,3,2)) + f(y+(7,3,2)) ≠ f((x + y) + (7,3,2))

 However it would be useful if we could combine scaling

and rotation with translation ….

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

5CGSG – Transforms

Affine Transforms

 In order to combine linear transforms with translation,

affine transforms are used.

 An affine transform is a combination of a linear transform

followed by a translation transform.

 The main characteristic of an affine transform is that it

preserves parallel lines, but not necessarily lengths and

angles.

 These transforms will be represented as 4 x 4 matrices

using what is referred to as homogenous notation.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

6CGSG – Transforms

Homogenous Notation (i)

 Recall that, a point describes a location in

space, whereas a vector describes a direction

and has no location.

 Also using 3 x 3 matrices we can perform linear

transformations such as rotations, scaling and

shearing on coordinates.

 As we’ve already seen translation is not linear

… hence cannot be performed using these

matrices.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

7CGSG – Transforms

Homogenous Notation (ii)

 This problem in not important for vectors, since these do

not represent a particular location (translation has no

meaning), however translation is very important for

points (for obvious reasons).

 The use of homogenous notation (as we shall see) allows

us to incorporate translation (for points) in our matrices,

i.e. using this notation we are able to represent affine

transforms.

 We basically need to augment our 3x3 matrices (in the

case of 3D) by one dimension to 4 x 4 matrices.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

8CGSG – Transforms

Homogenous Notation (iii)

 A homogenous vector is represented as follows:

p = (px, py, pz, pw)

 In the case of points pw is equal 1 and in the case of

vectors pw is equal to 0.

 When pw is not equal to either 1 or 0, then the actual

point (px, py, pz) is calculated through homogenization,

where all components are divided by pw

 P is then equal to (px/pw, py/pw, pz/pw, 1)

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

9CGSG – Transforms

Homogenous Notation (iv)

 The following represents how a 3 x 3 matrix M

is augmented into the homogenous form:

 Rotation, scaling and shear matrices can replace M in this

matrix, whereas all translation operations use the

additional elements of the augmented matrix. We shall

now see how to represent these transformations in the

matrix above.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

10CGSG – Transforms

Homogenous Notation (v)

 Using homogenous notation we will be able to carry out

more general affine transforms that contain translation

such as:

 Rotation about an axis that does not pass through the origin

 Scale about a plane that does not pass through the origin

 Reflection about a plane that does not pass through the origin

 We’ll first have a look at the ‘standard’ transformation

about the origin, but keep in mind that we could always

first translate the ‘centre’ of the transformation to the

origin, perform the linear transformation then translate

back to the original position. Essentially performing the

transformation TRT-1.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

11CGSG – Transforms

Orthogonal Matrices (Recall)

 A square matrix M, with only real elements, is orthogonal

if and only if MMT = MTM = I

 This means that the transpose of M is equal to the

inverse of M , i.e. M-1 = MT

 The standard basis is orthonormal, since the

basis vectors are orthogonal to each other and

of length one. Representing this basis as a

matrix E = (ex ey ez) = I, gives us an

orthogonal matrix.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

12CGSG – Transforms

Transforms Classification

 We can classify transforms as being either affine,

orthogonal or both.

 Translation matrix (moves a point) is affine.

 Rotation matrix (rotates a set number of radians about

an axis (x,y or z)) is both orthogonal and affine. Since it’s

orthogonal than it’s inverse is simple to calculate as MT

 Scaling matrix is affine.

 Shearing matrix is affine.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

13CGSG – Transforms

Translation Transform (visual)

Image from Tomas Akenine-Moeller RTR book .. This chapter is mostly based

On the transform chapter in this book.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

14CGSG – Transforms

Translation Transform (ii)

 A translation transform T(t) represented by the matrix T,

moves a point from one location to another according to

a vector t = (tx, ty, tz)

 Note that the multiplication of a point p with a matrix

transform T(t), results in a new point p’ equal to (px + tx,

py + ty, pz + tz)

 The inverse T-1(t) is equal to T(-t).

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

15CGSG – Transforms

Rotation Transform (visual)

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

16CGSG – Transforms

Rotation Transform (i)

 A rotation transform R(θ) represented by the matrix R,

rotates a point or a vector by a given angle θ, around a

given axis passing through the origin.

 Like translation, rotation is a rigid-body transform,

meaning that it preserves the distance between all points

transformed and preserves handedness.

 Commonly used rotation matrices include :

 Rx(θ) : rotate around the x-axis

 Ry(θ) : rotate around the y-axis

 Rz(θ) : rotate around the z-axis

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

17CGSG – Transforms

Rotation Transform (ii)

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

18CGSG – Transforms

Rotation Transform (iii)

 All rotation matrices have a determinant of one and are

thus orthogonal. This also holds for concatenations of

rotation matrices.

 Any arbitrary axis rotation can be represented as a series

of transform around the standard basis.

 We shall also describe a way by which we shall be able to

rotate points and vectors around an arbitrary axis

directly.

 Ri
-1(θ) = Ri(-θ)

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

19CGSG – Transforms

Rotation Transform (example)

 Assume that we want to rotate an object by θ radians around the z-

axis, with the centre of rotation being a certain point p. What does this

transform look like?

 We first need to translate the point p so that it lies on the origin of the

coordinate system using the transform T(-p)

 Once the point is on the origin we can rotate by θ radians along the z-

axis using the transform Rz(θ).

 Finally we translate everything back by T(p)

 Therefore the resulting transformation X is equal to:

 T(p) Rz(θ) T(-p) pay attention to the order

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

20CGSG – Transforms

Scaling Transform (i)

 Suppose I have an object (box) in my scene and I want

to increase or decrease its size … I would need to apply a

scaling transform to all the points which make up the

box.

 A scaling matrix S(s) = S(sx, sy, sz) scales an entity with

factors sx, sy, and sz along the x, y and z directions

respectively. Scaling might not be uniform …

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

21CGSG – Transforms

Scaling Transform (ii)

 We can also scale using cell (4,4) in our homogenous

notation … and using homogenization.

 Divisions are usually quite inefficient therefore the first

method is usually preferred, unless division is always

performed un which case there is no extra cost

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

22CGSG – Transforms

Scaling Transform (Reflection)

 In the case that one of the values in the scaling vector is

negative then we are performing a reflection transform

(or mirror).

 Which could be problematic since a reflection of points

could change from clockwise to counterclockwise ordering

of the points in a triangle … (we still need to check this

out in later material)

 In any case it is important to detect whether a given

matrix reflects in some manner. This can be done by

checking whether the determinant of the 3 x 3 matrix is

negative. If it is then we have a reflective matrix.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

23CGSG – Transforms

Shearing Transform (visual)

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

24CGSG – Transforms

Shearing Transform (i)

 Shearing transforms are mainly used to create distortion.

 There are six basic shearing matrices denotes by :

 Hxy(s) Hxz(s)

 Hyx(s) Hyz(s)

 Hzx(s) Hzy(s)

 The first parameter denotes which coordinate is being

changed by the shear matrix, whereas the second

denotes the coordinate which does the shearing.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

25CGSG – Transforms

Shearing Transform (ii)

 One of the shearing matrices is shown below:

 S is a scalar quantity … the effect of multiplying point p

with the above is

(px + spz, py, pz)

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

26CGSG – Transforms

Concatenation of Transforms

 Composition of transforms is very important because we

usually want to represent a series of transformations in

one matrix. Mainly for efficiency reasons.

 However the way (or rather order) we use to compose

(concatenate) them together is very important.

 Recall that the multiplication operator on matrices is non-

commutative.

 Concatenation (or composition) of transforms is thus said

to be order-dependent.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

27CGSG – Transforms

Concatenation of Transforms

 Important to remember is that if we want to first scale a

point then rotate it then translate it we need to

concatenate the matrices as follows: (T(R(S(p))))

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

28CGSG – Transforms

Rigid Body Transform

 A transform consisting only of translations and rotations

is referred to as a rigid body.

 This means that the relation between all the points

composing an object which is transformed are maintained

after the transform.

 The inverse of a rigid body transform X = T(t) R, is equal

to the transform X-1 = R-1 T(t)-1 = RT T(-t)

 Rigid body transforms are many times used in physics

engines in order to create physically based animations.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

29CGSG – Transforms

Normal Transform

 Matrices are used to transform many entities in CG

including points, vectors, geometry, etc

 However attention need to be gmade when transforming

the surface normals ... Check what happens in the

diagram below.

 The proper method

is to multiply by the

transpose of the

adjoint .. Derivation

follows.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

30CGSG – Transforms

Normal Transform (Derivation)

 Take N to be the surface normal at a point P

 Take Q to be a point tangential to point P (T = Q - P)

 This means that N . T = 0 i.e. NT * T = 0

 Take M to be the transform matrix applied to P and Q, i.e. P’ =

M * P and Q’ = M * Q

 The new tangent vector T’ = P’ – Q’ = M * Q – M * P

 Which is equal to M * (Q – P) = M * T

 Now define N’ to be the new normal in the transformed space

of P’ and Q’, thus (N’)T * T’ = 0

 Define R to be the matrix which transforms the normal N to N’

 Then we have, 0 = (N’)T * T’ = (R * N)T * T’ = (NT * RT) * (M *

T) = NT * (RT * M) * T

 Since we know that NT * T = 0 … we have RT * M = 0 which

leads to RT = M-1 and finally to R = (M-1)T

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

31CGSG – Transforms

Euler Transforms (i)

 The Euler transform is essentially an intuitive way of

specifying orientation …

 Many times it’s used to specify the direction and

orientation a camera is looking at.

 It’s name comes from the Swiss mathematician Leonhard

Euler (1707-1783)

 The transform is also used regularly in flight simulators …

 The transform is basically a sequence of rotations.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

32CGSG – Transforms

Euler Transforms (ii)

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

33CGSG – Transforms

Euler Transforms (i)

 E(h, p, r) = Rz(r) Rx(p) Ry(h)

 E is a concatenation of rotations along the basis axes.

This makes E orthogonal.

 Therefore the E-1 = ET

 h, p and r represent the amount of rotation around their

respective axes.

 This transform is available in many Graphics APIs.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

34CGSG – Transforms

Gimbal Lock ...

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

35CGSG – Transforms

Gimbal Lock ... example

 Let’s take an example where two axial systems are

mutually aligned.

 After a roll (z-axis) of 45deg we get

the alignment shown here …

 After a pitch (x-axis) of 90deg we get

the alignment shown here …

 Now if we carry out a yaw of 45deg (y-axis) we

would align back X’ and X thus counteracting

the effect of the original yaw !!

Y

Z, Z’ X

X’

Y’

45

Y

Z X
X’

Y’

Z’

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

36CGSG – Transforms

Rotation (with respect to an arbitrary vector)

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

37CGSG – Transforms

Change of Basis

 Suppose we want to express a vector v in a basis which

is different from the one it is currently defined in (such as

for example the standard x,y,z basis)

 Let’s say we have vector v, described by the coordinate

axes ex, ey, ez and we also have another coordinate

system described by the arbitrary basis vectors fx, fy, fz.

 If w is v expressed in basis F then we have:

 Fw = (fx, fy, fz) w = v

 w = F-1 v

 If F is orthogonal then w = FT v

