Sandro Spina

 \title{ Computer Science Department

 \title{ Computer Science Department University of Malta University of Malta

 U University of Malta

 U University of Malta

 E

 \title{Computer Graphics and Simulation Group
}

 \title{
Computer Graphics and Simulation Group
}

 \qquad}

\section*{\title{ Computer Graphics Math

 \square
 \square

 Computer Graphics Math

 Computer Graphics Math}
and a
\qquad r

$$
8
$$

.

 -
.

.

Computer Graphics
\equiv

er
 $-$

\qquad
$=$

The Euclidean Space (vector)

- The n-dimensional real Euclidean Space is denoted \mathbb{R}^{n}
- A vector \mathbf{v} in \mathbb{R}^{n} is an n-tuple, i.e. an ordered list of real numbers.

$$
\mathbf{v} \in \mathbb{R}_{n} \Leftrightarrow \mathbf{v}=\left(\begin{array}{c}
v_{0} \\
v_{1} \\
\vdots \\
v_{n^{-1}}
\end{array}\right) \text { with } v_{i} \in \mathbb{R}, \mathrm{i}=0, \ldots, \mathrm{n}-1
$$

- Note that the vector above is represented in columnmajor form.
- Vectors can be added together or multiplied by a scalar.

Transpose of a vector

- We can write row vectors (as opposed to column vectors as seen in the previous slide) as the transpose of their column vectors.
- $\mathbf{v}^{\boldsymbol{\top}}=\left[\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots ., \mathrm{v}_{\mathrm{n}}\right]$
- The subscripts are usually labelled in a more meaningful way ... not just numbers.
- For example a vector \mathbf{v} in 3D space would have the subscripts x, y and z representing the x-coordinate, y coordinate and z-coordinate of the vector point.

The Euclidean Space (+ and *)

$$
\mathbf{u}+\mathbf{v}=\left(\begin{array}{c}
u_{0} \\
u_{1} \\
\vdots \\
u_{n^{-1}}
\end{array}\right)+\left(\begin{array}{c}
v_{0} \\
v_{1} \\
\vdots \\
v_{n^{-1}}
\end{array}\right)=\left(\begin{array}{c}
u_{0}+v_{0} \\
u_{1}+v_{1} \\
\vdots \\
u_{n^{-1}}+v_{n^{-1}}
\end{array}\right) \in \mathbb{R}_{n}
$$

$$
\mathrm{au}=\left(\begin{array}{c}
a u_{0} \\
a u_{1} \\
\vdots \\
a u_{n^{-1}}
\end{array}\right) \in \mathbb{R}_{n}
$$

The Euclidean Space (+ and *)

- A vector may be multiplied by a scalar to produce a new vector whose components retain the same relative proportions.
- $\mathrm{av}=\mathbf{v a}$, where a is a scalar quantity
- When $\mathrm{a}=-1$, we get $-\mathbf{v}$ which represent the negation of the vector
- Addition and subtraction is component wise.
- IMPORTANT: $\mathbf{p}-\mathbf{q}=\mathbf{p}+(-\mathbf{q})$

Basic theorems on vectors ... (i)

- $\mathbf{p}+\mathbf{q}=\mathbf{q}+\mathbf{p}$
(commutativity)
- $(\mathbf{p}+\mathbf{q})+\mathbf{r}=\mathbf{p}+(\mathbf{q}+\mathbf{r})$
- $a(\mathbf{p}+\mathbf{q})=a \mathbf{p}+\mathrm{aq}$
- $(a+b) p=a p+b p$
(associativity)
(distributive law)
(distributive law)

Basic theorems on vectors ... (ii)

- (ab) $\mathbf{p}=a(b \mathbf{p})$
- $0+\mathbf{v}=\mathbf{v}$

$$
0+\mathbf{v}=\mathbf{v}
$$

(zero identity)

- $\mathbf{v}+(-\mathbf{v})=0$
(additive inverse)
(identity mult)

$$
(a D) p-a(D p)
$$

- $1 \mathbf{u}=\mathbf{u}$

Dot (Inner) Product of Vectors

- For a Euclidean space we may compute the dot product of two vectors, denoted by $\mathbf{u} . \mathbf{v}$ and defined as follows:

$$
\boldsymbol{u} \cdot \boldsymbol{v}=\sum_{i=0}^{n-1} u_{i} v_{i}
$$

- Which is essentially the summation of the products of the respective components of \mathbf{u} and \mathbf{v}.

Some rules for the dot product

- $\mathbf{u} . \mathbf{u} \geq 0$, with $\mathbf{u} . \mathbf{u}=0$ iff $\mathbf{u}=(0,0, \ldots, 0)=0$
- $(\mathbf{u}+\mathbf{v}) \cdot \mathbf{w}=\mathbf{u} \cdot \mathbf{w}+\mathbf{v} \cdot \mathbf{w}$ (additivity)
- (au) . $\mathbf{v}=a(\mathbf{u} \cdot \mathbf{v})$
- $\mathbf{u} \cdot \mathbf{v}=\mathbf{v} . \mathbf{u}$
(symmetry)
- u. $\mathbf{v}=0$ iff \mathbf{u} is perpendicular to \mathbf{v}

The norm of a vector

- The norm of a vector \mathbf{v}, denoted by $\|\mathbf{v}\|$, is a nonnegative number that can be expressed using the dot product as follows ...

$$
\|\boldsymbol{u}\|=\sqrt{\boldsymbol{u} \cdot \boldsymbol{u}}=\sqrt{\sum_{i=0}^{n-1} u_{i}^{2}}
$$

- The importance of the norm will be evident when used to normalise a vector.

Some rules for the norm / /v//

- $\quad\|\mathbf{u}\|=0$, iff $\mathbf{u}=(0,0, \ldots, 0)=\mathbf{0}$
- $\|\mathbf{a u}\|=|a|\|\mathbf{u}\|$
- $\|\mathbf{u}+\mathbf{v}\| \leq\|\mathbf{u}\|+\|\mathbf{v}\|$
- The norm of a vector gives us an indication of the its magnitude.

Vectors ...

- In our Euclidean space with basis vectors $(1,0,0),(0,1,0)$ and ($0,0,1$), since the basis vectors are common for all vectors we can omit them when representing the vector.
- We simply write the scalar components of the vector. For eg $\mathrm{v}=(4,5,6) \ldots$
- A vector \mathbf{v} can be interpreted in two ways:
- Point in space
- Directed line segment (i.e. A direction vector)

Vector Diagrams (iii)...
\square
\square
\square
\square
\square
\square
\qquad
\square

\square
\square
 ב" -
\qquad
-

Abstract

"

\qquad

$$
\begin{aligned}
& \overline{\underline{\underline{\underline{\prime}}}} \\
& \hline \hline
\end{aligned}
$$

\square
-
\qquad
av , , \quad la

av , ai
aV \quad, 7
\qquad

$$
\begin{aligned}
& \underline{\underline{\underline{\underline{\prime}}}}
\end{aligned}
$$

\qquad
-

$\times \times$
,
衰
$3 \times$

Abstract

E

3
\because

Normalisation of Vectors

- The norm of a vector gives us a measure of the length (magnitude) of the vector ...
- Sometimes we'll need to normalise vectors (loose magnitude information but retain direction) with the help of the norm.
- This can be done by dividing by the length of the vector (the norm)

$$
\frac{v}{\|v\|}
$$

- This is also called the unit vector

Dot Product (ii)

- We have already seen how to calculate the dot product between two vectors \mathbf{u} and \mathbf{v}.

- The dot product is also related to the angle θ between the vectors as follows:
- $\mathbf{u} . \mathbf{v}=\|\mathbf{u}\|\|\mathbf{v}\| \cos \theta$, where θ is the smallest angle between \mathbf{u} and \mathbf{v}
- We'll see how this equation is heavily used in CG for lighting calculations

Dot Product (iii)

- A number of conclusions can be drawn from the sign of the dot product.

- Important (as we've already seen) is when the dot product is 0 , indicates that the vectors are orthogonal.
- This is clear here as well given that $\cos (90 \mathrm{deg})=0$
- If u.v > 0 then angle θ lies between 0 and 90 degrees
- If $\mathbf{u} . \mathbf{v}<0$ then angle θ lies between 90 and 180 degrees
der
\square

\square

$$
w \cdot v=0
$$

\square
\square

Abstract

Abstract

$$
\overline{\underline{\underline{~}}}
$$

查
\qquad \because

Linear Independence (i)

- Vectors that are parallel are linearly dependent.
- More formally, given the following equation:
- $v_{0} \mathbf{u}_{0}+\ldots+v_{n-1} \mathbf{u}_{n-1}=0$
- If only assigning the scalars $\mathrm{v}_{0}=\ldots=\mathrm{v}_{\mathrm{n}-1}$ to 0 solves the above equation then the vectors u_{0}, \ldots, u_{n-1} are linearly independent.
- For example vectors $(3,5)$ and $(6,10)$ are not independent since $v_{0}=2$ and $v_{1}=-1$ solves the equation.

Linear Independence + Basis

- Linear independent vectors give us a way how to define all the space in which the vectors reside.
- If a set of n vectors, $\mathbf{u}_{0}, \ldots, \mathbf{u}_{n-1} \in \mathbb{R}^{n}$, is linearly independent and any vector \mathbf{v} can be written as

$$
\boldsymbol{v}=\sum_{i=0}^{n-1} v_{i} \boldsymbol{u}_{i}
$$

- ... then the vectors u_{0}, \ldots, u_{n-1} are said to span Euclidean space \mathbb{R}^{n}
- Moreover if the scalars v_{0} to v_{n-1} are uniquely determined by the vector \mathbf{v}, for all $\mathbf{v} \in \mathbb{R}^{\mathbf{n}}$, then $\mathbf{u}_{0, \ldots, \mathbf{u}_{\mathrm{n}-1}}$ form a basis in $\in \mathbb{R}^{n}$

Basis Vectors

- A three dimensional vector $\mathbf{v}=\left(v_{0}, v_{1}\right.$, v_{2}) expressed in the basis formed by $\mathrm{u}_{1}, \mathrm{u}_{2}$ and u_{3} in \mathbb{R}^{3}
- Take for example the basis vectors in 2D: $(4,3)$ and $(2,6)$.

- If I want to describe the vector $(-5,-6)$ I simply need to multiply $(4,3)$ by -1 and $(2,6)$ by $0.5 \ldots$ This will give me the new vector.
- I can describe all vectors in this way

Orthonormal Basis

- In CG we shall be making use of orthonormal basis ...
- For such a basis, consisting of base vectors u_{0}, \ldots, u_{n-1} the following must hold:

$$
\boldsymbol{u}_{i} \cdot \boldsymbol{u}_{j}= \begin{cases}0, & i \neq j \\ 1, & i=j\end{cases}
$$

- What's important here is that each pair of basis vectors must be orthogonal and have unit length.
- The vectors $(1,0,0)(0,1,0)$ and $(0,0,1)$ form an ortho normal basis which we refer to as the standard basis.
- The standard basis is orthogonal

Cross Product

- Suppose we have two vectors \mathbf{v} and $\mathbf{w} . .$. . And we need to generate a new vector which is orthogonal (perpendicular) to both vectors.
- The operation that computes this is the cross product.
- This property has many uses in computer graphics (as we shall see) one of which is a method for calculating a surface normal at a particular point given two distinct tangent vectors.

Cross Product (Definition)

- The cross product of two vectors \mathbf{u} and \mathbf{v}, is another vector whose components are defined as follows:
- $\mathbf{u} \times \mathbf{v}=\left(u_{y} v_{z}-u_{z} v_{y}, u_{z} v_{x}-u_{x} v_{z}, u_{x} v_{y}-u_{y} v_{x}\right)$
- There a two vectors that are perpendicular to $\mathbf{u} \times \mathbf{v} \ldots$ which are \mathbf{w} and $\mathbf{- w}$. One the negation of the other.
- The one we choose is determined by what we refer to as the right hand rule (in which you use your right hand obviously)

Right-Hand Rule

- With your right hand ... align
- Forefinger with \mathbf{v},
- Middle finger with w,
- The cross product will point in the direction of the thumb.
- If you negate \mathbf{w}, then the direction of the cross product changes as well.

Cross Product (Magnitude of ...)

- The length of the cross product of two vectors \mathbf{u} and \mathbf{v} is equal to the area of the parallelogram extended by the two vectors.
- This can be computed using the formula
- $\|\mathbf{u} \times \mathbf{v}\|=\|\mathbf{u}\|\|\mathbf{v}\| \sin \theta$
- Where θ is the angle between the vectors \mathbf{u} and \mathbf{v}

Cross Product (Magnitude of (ii))

Cross Product (Properties of ...)

- The cross product is not commutative (i.e. order is important)
- $\mathbf{u} \times \mathbf{v}=-(\mathbf{v} \times \mathbf{u})$
- $\mathbf{u} \times(\mathbf{v}+\mathbf{w})=(\mathbf{u} \times \mathbf{v})+(\mathbf{u} \times \mathbf{w})$
- $(\mathbf{u}+\mathbf{v}) \times \mathbf{w}=(\mathbf{u} \times \mathbf{w})+(\mathbf{v} \times \mathbf{w})$
- $a(\mathbf{v} \times \mathbf{w})=(a \mathbf{v}) \times \mathbf{w}=\mathbf{v} \times(\mathrm{aw})$
- $\mathbf{v} \times \mathbf{v}=0$ and $\mathbf{v} \times 0=0 \times \mathbf{v}=0$

Cross Product (Small Proof of correctness)

- We can use the result from the dot product to show that the cross product of two vectors \mathbf{u} and \mathbf{v} is correct (i.e. it is perpendicular to both vectors)
- Let u and v be any two 3D vectors. Then ($\mathbf{u} \times \mathbf{v}$). $\mathbf{u}=0$ and $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{v}=0$
- ($\mathbf{u} \times \mathbf{v}) \cdot \mathbf{u}=\left(u_{y} v_{z}-u_{z} v_{y}, u_{z} v_{x}-u_{x} v_{z}, u_{x} v_{y}-u_{y} v_{x}\right) \cdot \mathbf{u}$
- $=u_{x} u_{y} v_{z}-u_{x} u_{z} v_{y}+u_{y} u_{z} v_{x}-u_{y} u_{x} v_{z}+u_{x} v_{y} u_{z}-u_{y} v_{x} u_{z}$
- = 0

Matrices

- Matrices in 3D computer graphics are ubiquitous !!
- "Matrices are the mathematical currency for 3D graphics"
- OpenGL Bible
- We shall be using matrices to move (transform) points and direction vectors ...
- Matrices provide us with a tool to manipulate vectors and points.
- We shall be looking at a semi-formal mathematical description of matrices in the next few slides.

Matrices (Definition)

- A matrix \mathbf{M} is described by $p \times q$ scalars, $m_{i j r}$ where $0 \leq i \leq \mathrm{p}-1,0 \leq j \leq \mathrm{q}-1$, ordered in a rectangular fashion (with p rows and q columns) as shown below ...

$$
\mathbf{M}=\left(\begin{array}{ccc}
m_{00} & \cdots & m_{0, q-1} \\
\vdots & \ddots & \vdots \\
m_{p-1,0} & \cdots & m_{p-1, q-1}
\end{array}\right)=\left[m_{i j}\right]
$$

Identity Matrix

- The identity matrix \mathbf{I}, is a special matrix which is square and contains ones in the diagonal and zeros everywhere else. Also called the unit matrix.
- It is the matrix-form counterpart of the scalar number one.
- The following represents the 3×3 identity matrix ...

$$
\mathbf{I}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Matrix Addition

- Matrices add entry-wise. Because of this, the addition of two matrices M and N is only possible for equal sized matrices
- $\mathbf{M}+\mathbf{N}=\left[m_{i j}\right]+\left[n_{i j}\right]=\left[m_{i j}+n_{i j}\right]$
- Pictorially we have :
$\mathbf{M}+\mathbf{N}=\left(\begin{array}{ccc}m_{00}+n_{00} & \cdots & m_{0, p-1}+n_{0, q-1} \\ \vdots & \ddots & \vdots \\ m_{p-1,0}+n_{q-1,0} & \cdots & m_{p-1, q-1}+n_{p-1, q-1}\end{array}\right)$

Matrix Addition Properties

- The resulting matrix is of the same size of the operands
- $(\mathbf{L}+\mathbf{M})+\mathbf{N}=\mathbf{L}+(\mathbf{M}+\mathbf{N})$
- $\mathbf{M}+\mathbf{N}=\mathbf{N}+\mathbf{M}$
- $\mathbf{M}+\mathbf{O}=\mathbf{M}$
- $\mathbf{M}-\mathbf{M}=\mathbf{0}$

Matrix Scalar Multiplication

- We can (similar to vectors) multiply our matrix by a scalar quantity.
- A scalar a and a matrix M, can be multiplied as follows:
- $a \mathbf{M}=\left[a m_{i j}\right] \quad$... Pictorially we have:

$$
\boldsymbol{a} \mathbf{M}=\left(\begin{array}{ccc}
a m_{00} & \cdots & a m_{0, p-1} \\
\vdots & \ddots & \vdots \\
a m_{p-1,0} & \cdots & a m_{p-1, q-1}
\end{array}\right)
$$

Matrix Scalar Multiplication Properties

- $\mathbf{O M}=0$
- $1 \mathbf{M}=\mathbf{M}$
- $a(b \mathbf{M})=(a b) \mathbf{M}$
- $a 0=0$

$$
a \mathbf{0}=0
$$

$$
(a+b) \mathbf{M}=a \mathbf{M}+b \mathbf{M}
$$

$$
a(\mathbf{M}+\mathbf{N})=a \mathbf{M}+a \mathbf{N}
$$

- $a(\mathbf{M}+\mathbf{N})=a \mathbf{M}+a \mathbf{N}$
$1 M=M$

Transpose of a Matrix

- The transpose of a matrix \mathbf{M} is referred to as \mathbf{M}^{\top}.
- If $\mathbf{M}=\left[m_{\mathrm{ij}}\right]$ then \mathbf{M}^{\top} is defined as $\mathbf{M}=\left[m_{\mathrm{ji}}\right]$
- In practice we are switching the rows with the columns.
- Hence the transpose of a matrix of size $n \times m$, is a matrix with size $m \times n$.
- In a square matrix the diagonal scalars remain the same with all the other values are transposed.

Transpose of a Matrix (Properties)

- $(\mathbf{M}+\mathbf{N})^{\top}=\mathbf{M}^{\top}+\mathbf{N}^{\top}$
- $\left(\mathbf{M}^{\top}\right)^{\top}=M$
- $(\mathbf{M N})^{\top}=\mathbf{N}^{\top} \mathbf{M}^{\top}$

- $(a \mathbf{M})^{\top}=a \mathbf{M}^{\top}$
 .

[^0]
\qquad
全 를

,

 a\square \because " -

$(\mathbf{M}+\mathbf{N})^{\top}=\mathbf{M}^{\top}+\mathbf{N}^{\top}$全

Matrix Multiplication

- Matrix multiplication, denoted MN between two matrices \mathbf{M} and \mathbf{N}, is defined only if the size of \mathbf{M} is $p \times q$ and the size of \mathbf{N} is $q \times r$
- If this is the case then the resultant matrix $\mathbf{T}=\mathbf{M N}$, would be of size $p \times r$
- Each cell in the new matrix \mathbf{T} is computed as follows:

$$
\boldsymbol{T}_{\boldsymbol{p r}}=\sum_{k=1}^{q} \boldsymbol{M}_{p k} \boldsymbol{N}_{k r}
$$

Matrix Multiplication (Pictorially)

$$
\begin{aligned}
& \boldsymbol{T}=\boldsymbol{M} \boldsymbol{N}=\left(\begin{array}{ccc}
m_{00} & \cdots & m_{0, q-1} \\
\vdots & \ddots & \vdots \\
m_{p-1,0} & \cdots & m_{p-1, q-1}
\end{array}\right)\left(\begin{array}{ccc}
n_{00} & \cdots & n_{0, r-1} \\
\vdots & \ddots & \vdots \\
n_{q-1,0} & \cdots & n_{q-1, r-1}
\end{array}\right) \\
&=\left(\begin{array}{cccc}
\sum_{i=\mathbf{0}}^{\boldsymbol{q - 1}} \boldsymbol{m}_{\mathbf{0}, \boldsymbol{i}} \boldsymbol{n}_{\boldsymbol{i}, \mathbf{0}} & \cdots & \sum_{\boldsymbol{i = 0}}^{\boldsymbol{q - 1}} \boldsymbol{m}_{\mathbf{0}, \boldsymbol{i}} \boldsymbol{n}_{\boldsymbol{i}, r-1} \\
\vdots & \ddots & \vdots \\
\sum_{\boldsymbol{i = 0}}^{\boldsymbol{q - 1}} \boldsymbol{m}_{p-\mathbf{1}, \boldsymbol{i}} \boldsymbol{n}_{\boldsymbol{i}, \mathbf{0}} & \cdots & \sum_{\boldsymbol{i = 0}}^{\boldsymbol{q - 1}} \boldsymbol{m}_{\boldsymbol{p - 1 , i}} \boldsymbol{n}_{\boldsymbol{i}, r-1}
\end{array}\right)
\end{aligned}
$$

Matrix Multiplication with Vector

- If we consider a vector \mathbf{v} as an $n \times 1$ sized matrix then we can multiply a vector by a matrix using the method in the previous slide.
- Note that this will give us a new vector \mathbf{w} with dimensions $m \times 1$. Pictorially we have :

$$
w=M v=\left(\begin{array}{c}
m_{0} \cdot v \\
\vdots \\
m_{p-1} \cdot v
\end{array}\right)=\left(\begin{array}{c}
w_{0} \\
\vdots \\
w_{q-1}
\end{array}\right)
$$

Matrix Multiplication Properties (Imp)

- (LM)N $=\mathbf{L}(\mathbf{M N})$
- $(\mathbf{L}+\mathbf{M}) \mathbf{N}=\mathbf{L N}+\mathbf{L M}$
- $\mathbf{M I}=\mathbf{I M}=\mathbf{M}$
- Important: Matrix multiplication is not commutative ... which means that $\mathbf{M N} \neq \mathbf{N M}$ in general (there could be cases where it is)

Determinant of a Matrix (i)

- An important value associated with every square matrix is the value of its determinant.
- The determinant, $|\mathbf{M}|$ or $\operatorname{det}(\mathbf{M})$, is a scalar quantity derived from the entries of the matrix.
- For 2×2 square matrix the determinant is equal to :

$$
|\mathbf{M}|=\left|\begin{array}{ll}
m_{00} & m_{01} \\
m_{10} & m_{11}
\end{array}\right|=m_{00} m_{11}-m_{01} m_{10}
$$

Determinant of a Matrix (ii)

- In the case of a 3×3 matrix, he determinant is equal to:

$$
\begin{aligned}
|\mathbf{M}|= & \left|\begin{array}{lll}
m_{00} & m_{01} & m_{02} \\
m_{10} & m_{11} & m_{12} \\
m_{20} & m_{21} & m_{22}
\end{array}\right| \\
= & m_{00} m_{11} m_{22}+m_{01} m_{12} m_{20}+m_{02} m_{10} m_{21} \\
& \quad-m_{00} m_{12} m_{21}-m_{01} m_{10} m_{22} \\
& \quad-m_{02} m_{11} m_{20}
\end{aligned}
$$

- We are adding diagonals (from top) going to the right then subtracting diagonals (from top) going to the left.

Determinant of a Matrix (iii)

- If we assume that the rows in the matrix represent three different vectors, i.e.

$$
|\mathbf{M}|=\left|\begin{array}{lll}
e_{x} & e_{y} & e_{z} \\
u_{x} & u_{y} & u_{z} \\
u_{x} & u_{y} & u_{z}
\end{array}\right|
$$

- $|\mathbf{M}|=\left(m_{x} \times m_{y}\right) \cdot m_{z}$

Properties of the matrix determinant (i)

- For an $n \times n$ matrix the following apply to determinant calculations:
- $\left|\mathbf{M}^{-1}\right|=1 /|\mathbf{M}|$
- $|\mathbf{M N}|=|M||N|$
- $|\mathbf{a M}|=a|\mathbf{M}|$
- $\left|M^{\top}\right|=|M|$

Properties of the matrix determinant (ii)

- If all elements of a row (or column) of a matrix M are multiplied by a scalar a, then the new determinant is $a|\mathbf{M}|$
- IMP: If two rows (or columns) coincide (i.e. the cross product between them is 0) then the determinant of matrix $\mathbf{M},|\mathbf{M}|=0$
- This last property is important whenever we need to calculate the inverse of a matrix (as we shall see when working on geometric transformations in 3D pipeline)

Subdeterminants (Cofactors) and Adjoints (i)

- An adjoint is a form of a matrix.
- The subdeterminant (cofactor) of an $n \times n$ matrix \mathbf{M}, denoted by $d^{\mathbf{M}}{ }_{i j}$, is equal to the determinant (of the resulting $n-1 \times n-1$ matrix) obtained when deleting row i and column j from M.

$$
d_{02}^{M}=\left|\begin{array}{ll}
m_{10} & m_{11} \\
m_{20} & m_{21}
\end{array}\right|
$$

Subdeterminants (Cofactors) and Adjoints (ii)

- The adjoint of a matrix \mathbf{M} is obtained by taking the subdeterminants for every component in the matrix, resulting in the following:

$$
\operatorname{adj}(M)=\left(\begin{array}{ccc}
d_{00} & -d_{10} & d_{20} \\
-d_{01} & d_{11} & -d_{21} \\
d_{02} & -d_{12} & d_{22}
\end{array}\right)
$$

Inverse of a Matrix (i)

- The multiplicative inverse of a matrix, \mathbf{M}, denoted by \mathbf{M}^{-1}, (which is dealt with here), exists only for square matrices with $|\mathbf{M}| \neq 0$.
- This is one of the reasons why we need to be able to calculate the determinant of a matrix.
- If $\mathbf{N}=\mathbf{M}^{-1}$ then to prove the inverse is correct it suffices to show that $\mathbf{N M}=\mathbf{I}$ and $\mathbf{M N}=\mathbf{I}$
- I.e. a matrix multiplied by its inverse results in the identity matrix ... which produces no effect.

Inverse of a Matrix (ii)

- The equation outlined in the previous slide can be formulated in a slightly different way ... using vectors.
- If $\mathbf{u}=\mathbf{M} \mathbf{v}$ and the matrix \mathbf{N} exists such that $\mathbf{v}=\mathbf{N u}$, then $\mathbf{N}=\mathbf{M}^{-1}$
- This formulation makes it immediately more relevant to computer graphics.
- The adjoint method can be used to calculate the inverse.
- The inverse of a matrix is useful geometrically because it allows us to 'undo' another transformation.

Inverse of a Matrix (iii)

- In the case of a 2×2 matrix we have:

$$
\mathbf{M}^{-1}=\frac{1}{|\mathbf{M}|}\left|\begin{array}{cc}
m_{11} & -m_{01} \\
-m_{10} & m_{00}
\end{array}\right|
$$

- In the general case we have the following:

$$
\mathbf{M}^{-1}=\frac{1}{|\mathbf{M}|} \operatorname{adj}(\boldsymbol{M})
$$

Orthogonal Matrices

- A square matrix \mathbf{M}, with only real elements, is orthogonal if and only if $\mathbf{M M}^{\top}=\mathbf{M}^{\top} \mathbf{M}=\mathbf{I}$
- This means that the transpose of \mathbf{M} is equal to the inverse of \mathbf{M}, i.e. $\mathbf{M}^{-1}=\mathbf{M}^{\top}$
- The standard basis is orthonormal, since the basis vectors are orthogonal to each other and of length one (unit vectors). Representing this basis as a matrix $\mathbf{E}=\left(\mathbf{e}_{x} \mathbf{e}_{y} \mathbf{e}_{z}\right)=\mathbf{I}$, gives us an orthogonal matrix.

Transforms

- For our next module we'll see how matrices (and their properties) as discussed here are used in CG to describe point and vector transformations.
- Matrices are used to describe
- Rotations
- Scaling
- Translation
- Once that's done we'll be able to start writing some simple programs.

[^0]: \qquad

