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Coordinate Spaces (2D)

X-axis

Y-axis

(0,0)
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The Euclidean Space (vector)

 The n-dimensional real Euclidean Space is denoted Rn

 A vector v in Rn is an n-tuple, i.e. an ordered list of real 

numbers.

 Note that the vector above is represented in column-

major form.

 Vectors can be added together or multiplied by a scalar.
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Transpose of a vector

 We can write row vectors (as opposed to column vectors 

as seen in the previous slide) as the transpose of their 

column vectors.

 vT = [ v1, v2, ...., vn]

 The subscripts are usually labelled in a more meaningful 

way ... not just numbers.

 For example a vector v in 3D space would have the 

subscripts x, y and z representing the x-coordinate, y-

coordinate and z-coordinate of the vector point.
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The Euclidean Space (+ and *)
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The Euclidean Space (+ and *)

 A vector may be multiplied by a scalar to produce a new 

vector whose components retain the same relative 

proportions. 

 av = va,  where a is a scalar quantity

 When a = -1, we get –v which represent the negation of 

the vector

 Addition and subtraction is component wise.

 IMPORTANT: p – q = p + (-q)
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Basic theorems on vectors ... (i)

 p + q = q + p          (commutativity)

 (p + q) + r = p + (q + r)     (associativity)

 a (p + q) = ap + aq (distributive law)

 (a + b) p = ap + bp (distributive law)
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Basic theorems on vectors ... (ii)

 (ab) p = a (b p)

 0 + v = v (zero identity)

 v + (-v) = 0 (additive inverse)

 1u = u (identity mult)
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Dot (Inner) Product of Vectors

 For a Euclidean space we may compute the dot product 

of two vectors, denoted by u.v and defined as follows:

 Which is essentially the summation of the products of the 

respective components of u and v .
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Some rules for the dot product

 u . u ≥ 0, with u . u = 0 iff u = (0, 0, ..., 0) = 0

 (u + v) . w = u . w + v . W (additivity)

 (au) . v = a (u . v) (homogeneity)

 u . v = v . u (symmetry)

 u . v = 0 iff u is perpendicular to v



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

11CGSG – Linear Algebra – Vectors + Matrices

The norm of a vector

 The norm of a vector v, denoted by ||v||, is a 

nonnegative number that can be expressed using the dot 

product as follows ...

 The importance of the norm will be evident when used to 

normalise a vector.
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Some rules for the norm ||v||

 || u || = 0,  iff u = (0, 0, ..., 0) = 0

 || au || = |a| || u || 

 || u + v || ≤ || u || + || v ||

 The norm of a vector gives us an indication of the its 

magnitude.
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Vectors ...

 In our Euclidean space with basis vectors (1,0,0), (0,1,0) and 

(0,0,1), since the basis vectors are common for all vectors we 

can omit them when representing the vector.

 We simply write the scalar components of the vector. For eg 

v=(4,5,6) .... 

 A vector v can be interpreted in two ways:

 Point in space

 Directed line segment (i.e. A direction vector)
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Vector Diagrams (ii)...

u

v

w
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Vector Diagrams ...
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Normalisation of Vectors

 The norm of a vector gives us a measure of the length 

(magnitude) of the vector ...

 Sometimes we‟ll need to normalise vectors (loose magnitude 

information but retain direction) with the help of the norm.

 This can be done by dividing by the length of the vector (the 

norm)

 This is also called the unit vector 
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Dot Product (ii)

 We have already seen how to calculate the dot product 

between two vectors u and v.

 The dot product is also related to the angle θ between 

the vectors as follows:

 u . v = ||u|| ||v|| cos θ ,where θ is the smallest angle between u and v

 We‟ll see how this equation is heavily used in CG for lighting calculations

u

v

θ
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Dot Product (iii)

 A number of conclusions can be  drawn from

the sign of the dot product.

 Important (as we‟ve already seen) is when the dot 

product is 0, indicates that the vectors are orthogonal.

 This is clear here as well given that  cos(90deg) = 0

 If u.v > 0 then angle θ lies between 0 and 90 degrees

 If u.v < 0 then angle θ lies between 90 and 180 degrees

u

v
θ
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Dot Product (iv)

w . v = 0

w1. v > 0

v
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Linear Independence (i)

 Vectors that are parallel are linearly dependent.

 More formally, given the following equation:

 v0 u0 + ... + vn-1 un-1 = 0

 If only assigning the scalars v0 = ... = vn-1 to 0 solves the 

above equation then the vectors u0, ..., un-1 are linearly 

independent.

 For example vectors (3,5) and (6,10) are not 

independent since v0=2 and v1=-1 solves the equation.
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Linear Independence + Basis

 Linear independent vectors give us a way how to define all the 

space in which the vectors reside.

 If a set of n vectors, u0, ..., un-1 є Rn , is linearly independent 

and any vector v can be written as

 ... then the vectors u0, ..., un-1 are said to span Euclidean 
space Rn

 Moreover if the scalars v0 to vn-1 are uniquely determined 
by the vector v, for all v є Rn , then u0,...,un-1 form a 

basis in є Rn
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Basis Vectors

 A three dimensional vector v = (v0, v1, 

v2) expressed in the basis formed by 
u1, u2 and u3 in R3

 Take for example the basis vectors in 

2D: (4,3) and (2,6). 

 If I want to describe the vector (-5,-6) 

I simply need to multiply (4,3) by -1 

and (2,6) by 0.5 ... This will give me 

the new vector.

 I can describe all vectors in this way

u1

u3

u2

v
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Orthonormal Basis

 In CG we shall be making use of orthonormal basis ... 

 For such a basis, consisting of base vectors u0, ..., un-1 

the following must hold:

 What‟s important here is that each pair of basis vectors 

must be orthogonal and have unit length.

 The vectors (1,0,0) (0,1,0) and (0,0,1) form an ortho 

normal basis which we refer to as the standard basis.

 The standard basis is orthogonal
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Cross Product

 Suppose we have two vectors v and w …. And we need 

to generate a new vector which is orthogonal 

(perpendicular) to both vectors.

 The operation that computes this is the cross product.

 This property has many uses in computer graphics (as we 

shall see) one of which is a method for calculating a 

surface normal at a particular point given two distinct 

tangent vectors.
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Cross Product (Definition)

 The cross product of two vectors u and v, is another 

vector whose components are defined as follows:

 u x v = (uyvz – uzvy, uzvx – uxvz, uxvy – uyvx)

 There a two vectors that are perpendicular to u x v  … 

which are w and –w. One the negation of the other.

 The one we choose is determined by what we refer to as 

the right hand rule …. (in which you use your right hand 

obviously)
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Right-Hand Rule

 With your right hand … 

align

 Forefinger with v,

 Middle finger with w,

 The cross product will point 

in the direction of the 

thumb.

 If you negate w, then the 

direction of the cross 

product changes as well.
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Cross Product (Magnitude of ...)

 The length of the cross product of two vectors u and v is 

equal to the area of the parallelogram extended by the 

two vectors.

 This can be computed using the formula

 || u x v || = || u || || v ||  sin θ

 Where θ is the angle between the vectors u and v
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Cross Product (Magnitude of (ii))

θ

u

v

||u|| sin θ
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Cross Product (Properties of ...)

 The cross product is not commutative (i.e. order is 

important)

 u x v = -(v x u)

 u x (v + w) = (u x v) + (u x w)

 (u + v) x w = (u x w) + (v x w)

 a (v x w) = (av) x w = v x (aw)

 v x v = 0        and      v x 0 = 0 x v = 0
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Cross Product (Small Proof of correctness)

 We can use the result from the dot product to show that 

the cross product of two vectors u and v is correct (i.e. it 

is perpendicular to both vectors)

 Let u and v be any two 3D vectors. Then (u x v) . u = 0 

and (u x v) . v = 0

 (u x v) . u = (uyvz – uzvy, uzvx – uxvz, uxvy – uyvx) . u

 = uxuyvz – uxuzvy + uyuzvx – uyuxvz + uxvyuz – uyvxuz

 = 0
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Matrices

 Matrices in 3D computer graphics are ubiquitous !!

 “Matrices are the mathematical currency for 3D graphics” 

– OpenGL Bible

 We shall be using matrices to move (transform) points 

and direction vectors …

 Matrices provide us with a tool to manipulate vectors and 

points.

 We shall be looking at a semi-formal mathematical 

description of matrices in the next few slides. 
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Matrices  (Definition)

 A matrix M is described by p x q scalars, mij, 

where 0 ≤ i ≤ p-1, 0 ≤ j ≤ q-1, ordered in a 

rectangular fashion (with p rows and q 

columns) as shown below …
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Identity Matrix

 The identity matrix I, is a special matrix which is square

and contains ones in the diagonal and zeros everywhere 

else.  Also called the unit matrix.

 It is the matrix-form counterpart of the scalar number 

one.

 The following represents the 3x3 identity matrix …
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Matrix Addition

 Matrices add entry-wise. Because of this, the addition of 

two matrices M and N is only possible for equal sized 

matrices ….  

 M + N = [mij] + [nij] = [mij + nij]

 Pictorially we have :
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Matrix Addition Properties

 The resulting matrix is of the same size of the operands

 (L + M) + N = L + (M + N)

 M + N = N + M

 M + 0 = M

 M – M = 0
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Matrix Scalar Multiplication

 We can (similar to vectors) multiply our matrix by a 

scalar quantity.

 A scalar a and a matrix M, can be multiplied as follows:

 aM = [amij]    …. Pictorially we have:
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Matrix Scalar Multiplication Properties

 0M = 0

 1M = M

 a(bM) = (ab)M

 a0 = 0

 (a+b) M = aM + bM

 a(M + N) = aM + aN



Computer Graphics & Simulation Group Department of Computer Science - University of Malta

38CGSG – Linear Algebra – Vectors + Matrices

Transpose of a Matrix

 The transpose of a matrix M is referred to as MT .

 If M = [mij] then MT is defined as M = [mji] 

 In practice we are switching the rows with the columns.

 Hence the transpose of a matrix of size n x m, is a matrix 

with size m x n.

 In a square matrix the diagonal scalars remain the same 

with all the other values are transposed.  
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Transpose of a Matrix (Properties)

 (aM)T = aMT

 (M + N) T = MT + NT

 (MT) T = M

 (MN) T = NT MT
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Matrix Multiplication

 Matrix multiplication, denoted MN between two matrices 

M and N, is defined only if the size of M is p x q and the 

size of N is q x r

 If this is the case then the resultant matrix T = MN, 

would be of size p x r

 Each cell in the new matrix T is computed as follows:
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Matrix Multiplication (Pictorially)
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Matrix Multiplication with Vector

 If we consider a vector v as an n x 1 sized matrix then 

we can multiply a vector by a matrix using the method in 

the previous slide. 

 Note that this will give us a new vector w with 

dimensions m x 1.   Pictorially we have :  
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Matrix Multiplication Properties (Imp)

 (LM)N = L(MN)

 (L+M)N = LN + LM

 MI = IM = M

 Important: Matrix multiplication is not commutative … 

which means that MN ≠ NM in general (there could be 

cases where it is)
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Determinant of a Matrix (i)

 An important value associated with every square matrix 

is the value of its determinant.

 The determinant, |M| or det(M), is a scalar quantity 

derived from the entries of the matrix. 

 For 2 x 2 square matrix the determinant is equal to :
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Determinant of a Matrix (ii)

 In the case of a 3 x 3 matrix, he determinant is equal to:

 We are adding diagonals (from top) going to the right 

then subtracting diagonals (from top) going to the left.
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Determinant of a Matrix (iii)

 If we assume that the rows in the matrix represent three 

different vectors, i.e. 

 |M| = (mx x my) . mz
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Properties of the matrix determinant (i)

 For an n x n matrix the following apply to 

determinant calculations:

 |M-1| = 1 / |M|

 |MN| = |M| |N|

 |aM| =  a|M|

 |MT| = |M|
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Properties of the matrix determinant (ii)

 If all elements of a row (or column) of a matrix 

M are multiplied by a scalar a, then the new 

determinant is a|M|

 IMP: If two rows (or columns) coincide (i.e. the cross 

product between them is 0) then the determinant of 

matrix M, |M| = 0

 This last property is important whenever we need to 

calculate the inverse of a matrix (as we shall see when 

working on geometric transformations in 3D pipeline) 
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Subdeterminants (Cofactors) and Adjoints (i)

 An adjoint is a form of a matrix.

 The subdeterminant (cofactor) of an n x n

matrix M, denoted by dM
ij , is equal to the 

determinant (of the resulting n-1 x n-1 matrix) 

obtained when deleting row i and column j from 

M.  
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Subdeterminants (Cofactors) and Adjoints (ii)

 The adjoint of a matrix M is obtained by taking 

the subdeterminants for every component in 

the matrix, resulting in the following:
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Inverse of a Matrix (i)

 The multiplicative inverse of a matrix, M, denoted by M-1, 

(which is dealt with here), exists only for square matrices 

with |M| ≠ 0.

 This is one of the reasons why we need to be able to 

calculate the determinant of a matrix.

 If N = M-1 then to prove the inverse is correct it suffices 

to show that NM = I and MN = I

 I.e. a matrix multiplied by its inverse results in the 

identity matrix … which produces no effect. 
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Inverse of a Matrix (ii)

 The  equation outlined in the previous slide can be 

formulated in a slightly different way … using vectors.

 If u = Mv and the matrix N exists such that v = Nu, 

then N = M-1

 This formulation makes it immediately more relevant to 

computer graphics. 

 The adjoint method can be used to calculate the inverse.

 The inverse of a matrix is useful geometrically because it 

allows us to „undo‟ another transformation.
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Inverse of a Matrix (iii)

 In the case of a 2 x 2 matrix we have:

 In the general case we have the following:
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Orthogonal Matrices

 A square matrix M, with only real elements, is orthogonal 

if and only if MMT = MTM = I  

 This means that the transpose of M is equal to the 

inverse of M , i.e. M-1 = MT

 The standard basis is orthonormal, since the 

basis vectors are orthogonal to each other and 

of length one (unit vectors). Representing this 

basis as a matrix E = (ex ey ez) = I, gives us 

an orthogonal matrix. 
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Transforms ...

 For our next module we‟ll see how matrices 

(and their properties) as discussed here are 

used in CG to describe point and vector 

transformations.

 Matrices are used to describe 

 Rotations

 Scaling

 Translation

 Once that‟s done we‟ll be able to start writing some 

simple programs.


