
Computer Graphics & Simulation Group Department of Computer Science - University of Malta

1CGSG – Computer Graphics I – An Overview

Computer Graphics I
- An Overview -

Sandro Spina
Computer Graphics and Simulation Group

Computer Science Department
University of Malta

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

2CGSG – Computer Graphics I – An Overview

Welcome

 The course is being organised by CGSG.

 Course Outline :

 Mathematics : Some Linear Algebra + Trigonometry

 Illumination (Models, Rendering Eqn, Physically based)

 Viewer Optics

 Geometry Transformation Pipeline

 Texturing, Sampling and Filtering

 Advanced Texturing (TBN Matrix)

 GPUs and GPGPUs

 Scene Representation

 Individual Assignment: Game Design.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

3CGSG – Computer Graphics I – An Overview

Books & Software

 Real-Time Rendering 3rd Edition (Tomas Akenine-Moller,

Eric Hanies)

 Computer Graphics 2nd Edition (Foley, vam Dam, Feiner,

Hughes)

 Mathematics for 3D Game Programming and Computer

Graphics (Eric Lengyel)

 Any IDE which supports C# and XNA

 Recommended: Microsoft’s Express Edition for C# or the

XNA Development Centre (free editions)

 Other programming languages may be used …

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

4CGSG – Computer Graphics I – An Overview

By the end of the course …

 You should be able to appreciate what the process of

creating 3D applications involves … because

 You should be able yourselves to write software which

takes advantage of 3D.

 The ability to create 3D enabled applications will give you

an edge in any future software you will build.

 Software: C# using XNA Framework

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

5CGSG – Computer Graphics I – An Overview

Real-time Rendering ...

 Before we start: these slides are heavily based on one of the

best books out there on real-time computer graphics.

 According to Tomas A Mueller (and many others):

 Real-time rendering is concerned with the ‘making’ of images rapidly on the

computer.

 As such it is the most highly interaction field of computer

graphics (others include offline rendering, CV, etc)

 An image appears on the screen, the viewer reacts to it, and

this feedback effects what happens next.

 All this happens many times per second ... These still images

become animations.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

6CGSG – Computer Graphics I – An Overview

Real-time Rendering ...

 Frames Per Second: From 6fps to 72fps

 Rendering in real-time ... In 3D

 Graphics Acceleration Hardware

 Gaming (in general) is probably the most prominent area in which real-

time rendering is made use of.

 PS3, XBox360, Wii, DS/i, iPhone, PSP, many mobile devices, are now

embedding some form of graphics chip which is able to perform real-

time rendering.

 The market for real-time rendering (on everything) is now booming

evolutions in hardware is making unbelievable advances.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

7CGSG – Computer Graphics I – An Overview

The Graphics Rendering Pipeline

 The main role of the pipeline is to generate (render) a two-

dimensional image, given:

 A virtual camera

 Three-dimensional objects

 Light sources,

 Shading equations,

 Possibly other components of the 3D environment.

 So this pipeline is fundamental for rendering and is thus the

underlying tool for real-time rendering.

 Different Hardware / software might have a different (slightly

perhaps) pipeline but at the end of it if you want to render

something it has to pass through this pipeline.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

8CGSG – Computer Graphics I – An Overview

RTR Pg 12 - Frame Render

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

9CGSG – Computer Graphics I – An Overview

Pipeline Stages - Architecture

 Every stages of the pipeline prepares the data for the next stage. This

is true for all pipelines in factories etc ...

 The speed of the pipeline is determined by the slowest stage ... which

then determines the frames per second (together with other things

such as the amount of data processed)

 The pipeline stages execute in parallel (that is why the previous point is

true of course).

 A high-level conceptualisation of the rendering would be as split in the

following three stages:

 Application

 Geometry

 Rasterizer

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

10CGSG – Computer Graphics I – An Overview

Highlevel Pipeline Stages - Diagram

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

11CGSG – Computer Graphics I – An Overview

The Application Stage

 This is the initial stage carried out on the CPU which feeds

(with data – geometry primitives) the GPU pipeline.

 The developer has full control over what happens in the

application stage.

 Optimisations in this stage effect the entire pipeline ... For

example Level of Detail calculations.

 Consider the game of pacman and his chase for the ghosts. In

this stage of the pipeline the programmer handles one very

important task ... Collision detection (has the geometry of the

ghost intersected the geometry of pacman)

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

12CGSG – Computer Graphics I – An Overview

The Geometry Stage

 Primarily responsible for the majority of per-polygon and per-

vertex operations.

 Further subdivided into :

 Model and view Transforms

 Vertex shading

 Projection

 Clipping

 Screen Mapping

ModelView

Transf

orm

Vertex

Sha

ding

Projection Clipping Screen

Mappi

ng

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

13CGSG – Computer Graphics I – An Overview

Model and View Transform

 Different Coordinate Systems / Spaces

 Object Model Space (coordinates are relative to an origin in the object itself)

 A model transform is then associated with the model which essentially moves

it to a particular space in world coordinates.

 The model is now in world space coordinates.

 Various instances can be created of the same object by applying different

model transformations to the same model.

 The world space is unique ... There’s only one of it. All models

to be rendered are in this space now.

 We now transform everything from world space into camera

space ... i.e. Relative to the location from where the camera is

pointing. Note that camera also has a location in world space.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

14CGSG – Computer Graphics I – An Overview

Vertex Shading

 So far we’ve looked into the geometric aspects (shape +

position)

 At this stage we also need to model the appearance of the

objects.

 Appearance relates to the material of the object + the

interactions between light and the material.

 Shading:

 “The process of determining the effect of lighting on a material”

 Uses a shading equation ... Which at this stage performs per vertex

computations. These values are then passed to the rasterisation stage.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

15CGSG – Computer Graphics I – An Overview

Projection ...

 After vertex shading ... Our models (in camera/eye space) need to be

projected onto a plane (3D->2D transform in theory).

 More formally the projection transforms the view volume into a unit

cube with its extreme points at (-1,-1,-1) and (1,1,1) called the

canonical view volume.

 Orthographic Projection (Preserves parallel lines)

 Perspective Projection (essentially how we see things, the further they

are from the camera the smaller they become)

 Note that here we are really transforming the view volume (frustum or

rectangular box volume) into a normalised canonical view (another

volume). It is still a projection because after display the z-coordinate is

not stored in the image generated. Stored in Z-Buffer for depth

calculations.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

16CGSG – Computer Graphics I – An Overview

Clipping (i)

 We only need to shade the objects (models) which are within the field

of view of the camera.

 After projection these objects will be those objects which are in the

normalised view volume.

 Only these primitives wholly (or partially) inside the view volume need

to be passed to the rasterizer stage, which then draws them on the

screen. Anything else is a waste of computational resources.

 Clipping needs to be carried out on those primitives that are partially

within the view volume.

 View transformation and projection are carried out before in order to

make this step easier. Remember that we can now clip against a unit

view volume.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

17CGSG – Computer Graphics I – An Overview

Clipping (ii)

 Clipping against 6 planes ...

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

18CGSG – Computer Graphics I – An Overview

Screen Mapping

 After clipping, primitives are now passed to the screen mapping

stage.

 The coordinates are still 3 dimensional (even after projection)

at this stage ... But only the x and y coordinates (of each

primitive) are used and transformed to screen coordinates.

 Screen coordinates + z-coordinate = Window Coordinates

 Screen coordinates are obtained by translating and scaling

(non-uniform scaling most of the times)

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

19CGSG – Computer Graphics I – An Overview

The Rasterizer Stage

 Final stage in our high-level conceptualised pipeline.

 We now have transformed and projected vertices from all the primitives

in the normalised view volume.

 The goal of this stage is to compute and set colours for the pixels

covered by the object.

 This process is called rasterisation or scan conversion, which finally

outputs the pixels on the screen.

 It’s inputs (associated with each vertex) are:

 2D vertices in screen space

 z coordinates representing depth

 various shading information

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

20CGSG – Computer Graphics I – An Overview

The Rasterizer Stage Pipeline

 The rasteriser stage (like previous stages) is in itself also split

into functional stages forming a pipeline.

Triangle Setup

Triangle Traversal

Pixel Shading Merging

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

21CGSG – Computer Graphics I – An Overview

Triangle Setup and Traversal

 Triangle setup is something fixed done by the hardware in

which you can’t do much.

 Essentially the triangles are prepared for shading

 Triangle Traversal is the process of finding which pixels are

inside a triangle.

 Each triangle fragment’s properties are generated using data

interpolated among the three vertices.

 Once we establish which pixels are effected by the triangle

being rendered ... Pixel shading is carried out.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

22CGSG – Computer Graphics I – An Overview

Pixel Shading

 Every per pixel computation is performed here ... i.e. All the pixels that

fall within any of the fragments we are rendering.

 The end result is a colour for each pixel ... which is further passed to

the next (and final) stage of the pipeline.

 On today’s modern GPUs this part of the pipeline is completely

programmable and is executed by the GPU shader cores.

 Texturing can be applied here ... To increase the realism of a material.

 Pixel shaders

 HLSL = Shader used with the DirectX API

 GLSL = Shader used with the OpenGL API

 CG = Generic shader language

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

23CGSG – Computer Graphics I – An Overview

Merging (i)

 Merging of different buffers in the system to output the final set of

pixels forming the frame.

 Information for each pixel is stored in the colour buffer. Essentially a 2D

array of colours.

 The merging stage updates this buffer with the information (fragment

colour) received from the shading stage.

 This stage is not programmable but is highly configurable (similar to

the fixed function pipeline)

 This stage also resolves visibility using (usually) the z-buffer algorithm.

 The algorithm makes use of a depth buffer which stores the z-

coordinates from the projection stage.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

24CGSG – Computer Graphics I – An Overview

Merging (ii)

 A stencil buffer can also be used in this stage if required by the effects

which are currently active (example shadows).

 The accumulation buffer can be used to simulate effects like motion

blur. Images can be accumulated over a number of frames using a st

of operators.

 Other effects include simulating depth of field, antialiasing, soft

shadows, etc.

 Double Buffering : Rendering takes place offline (while you are

watching the previous frame on your monitor) in a back buffer.

 The content of the back buffer is swapped as soon as the scene is

rendered with the contents in the front buffer during vertical retrace of

the monitor.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

25CGSG – Computer Graphics I – An Overview

Conclusions on the pipeline

 The pipeline which is described in Mueller’s Real-Time Rendering book

(summarised in these slides) has been evolving over a number of years

over different hardware evolutions.

 This is not the only possible pipeline ... Offline rendering for example

undergoes a different process altogether.

 For many years we have lived with the fixed-function pipeline defined

by the graphics API in use (OpenGL or Direct3D)

 The last (most probably) example of a fixed function pipeline if

Nintendo Wii console. PS3 and XBOX360 are programmable.

 In most parts of this course we shall be using the programmable

version of the pipeline ...

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

26CGSG – Computer Graphics I – An Overview

The Game Engine (i)

 The graphics pipeline is responsible for the rendering of

objects within our virtual world ...

 But prior to this some processing needs to take place in

order to setup this virtual world (scene)

 Although (as we shall see) this can be done by creating

the geometries, processing them and then sending them

to the pipeline this is usually done is a more structured

(in terms of software design) way.

 This is were the game engine comes into effect.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

27CGSG – Computer Graphics I – An Overview

The Game Engine (ii)

 In an interactive 3D application such as a game, a large

amount of code is required to do all the actions required

from the game.

 A typical Game Engine loop:

 Draw current scene on the screen

 Animate characters ... (e.g. players running)

 Detect collisions between objects in the scene ... (e.g. in a FPS)

 React to these collisions in a physically correct manner so that the

animation are realistic (and convincing)

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

28CGSG – Computer Graphics I – An Overview

Assignment

 Constitutes 40% of your final mark.

 You will NOT BE divided into groups (individual effort required)

 You’ll be developing a game-like application ... which we’ll be discussing

during class.

 You are encouraged to include in the development of the game your

ideas

 Not Multiplayer (although you can look into this option if you want)

 Deliverables: Report (VERY IMPORTANT) + source & executable code.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

29CGSG – Computer Graphics I – An Overview

Tools

 XNA Framework

 DirectX

 OpenGL – with CodeBlocks

 Blender (or any other modelling tool)

 Game Engines ... For C++, Java, Python, etc

 OGRE, JMonkey

