
Computer Graphics & Simulation GroupComputer Graphics & Simulation Group DepartmentDepartment ofof ComputerComputer Science Science -- University of MaltaUniversity of Malta

1Java2D/Java3D Introduction

Java2D/Java3D Graphics

Sandro Spina
Computer Graphics and Simulation Group

Computer Science Department

University of Malta

Computer Graphics & Simulation GroupComputer Graphics & Simulation Group DepartmentDepartment ofof ComputerComputer Science Science -- University of MaltaUniversity of Malta

2Java2D/Java3D Introduction

Abstraction in Software Engineering

� We shall be looking at how abstraction is
essential when working with Computer
Graphics

� Java2D and Java3D are APIs which provide
this abstraction over OpenGL/DirectX which
are providing a simpler abstraction of the
underlying GPU.

� Software Engineers should be capable of
coming up with adequate abstractions.

� Sun provides an ideal example through it’s
rendering APIs.

Computer Graphics & Simulation GroupComputer Graphics & Simulation Group DepartmentDepartment ofof ComputerComputer Science Science -- University of MaltaUniversity of Malta

3Java2D/Java3D Introduction

3D Graphics Basic Elements

A Modeler : constructs

virtual world models.

Eg Autodesk Maya.

A Renderer : calculates

how light interacts with

the surfaces of the models

in the scene.

Computer Graphics & Simulation GroupComputer Graphics & Simulation Group DepartmentDepartment ofof ComputerComputer Science Science -- University of MaltaUniversity of Malta

4Java2D/Java3D Introduction

The (simplified) Graphics Pipeline

The mechanism that takes a scene description and converts it into something

we can see

Computer Graphics & Simulation GroupComputer Graphics & Simulation Group DepartmentDepartment ofof ComputerComputer Science Science -- University of MaltaUniversity of Malta

5Java2D/Java3D Introduction

DirectX and OpenGL

• DirectX and OpenGL are two popular (competing) graphics

pipeline models which are today accepted as industry

standards.

• DirectX is a proprietary API developed by Microsoft. Current

release is DirectX10.1 and is predominantly used in the .NET

framework.

• OpenGL is an open standard API. OpenGL operates on a

much wider range of hardware platforms and software

environments. OpenGL is callable from Ada, C, C++, Fortran,

Python, Perl, Java, etc …

Computer Graphics & Simulation GroupComputer Graphics & Simulation Group DepartmentDepartment ofof ComputerComputer Science Science -- University of MaltaUniversity of Malta

6Java2D/Java3D Introduction

Java Graphics APIs – with different levels of abstraction

• Java2D + Java3D : a high-level 3D graphics API.
Uses OpenGL internally (or alternatively Direct3D
on Windows) . Provides a complete framework
(helper classes, etc.) in which to develop 3D
applications.

• JOGL : a low-level Java wrapper of the OpenGL
graphics API. Makes use of JNI. This is exactly
what you’ll get (as in function calls) if one is
coding in c/c++.

Computer Graphics & Simulation GroupComputer Graphics & Simulation Group DepartmentDepartment ofof ComputerComputer Science Science -- University of MaltaUniversity of Malta

7Java2D/Java3D Introduction

Java2D Rendering Process

• Involves the following steps :

– Construct the 2D objects

– Apply transformations to the objects

– Apply colour and other rendering properties

– Render the scene on a graphics device

Computer Graphics & Simulation GroupComputer Graphics & Simulation Group DepartmentDepartment ofof ComputerComputer Science Science -- University of MaltaUniversity of Malta

8Java2D/Java3D Introduction

(some of the) Java2D Classes

• Graphics2D (abstract class) – used to access the rendering
engine. Usually retrieved when using the
paintComponent(Graphics g) method. Methods include
setColor(..), drawLine(..), draw(Shape s), etc…

• Shape Interface – a geometric object can be rendered by
Graphics2D if it implements Shape. Java2D provides a number
of built-in shapes including Arc2D, Ellipse2D, Rectangle2D,
Line2D …

• Eg. Line2D line = new Line2D(x1,y1,x2,y2)

06/06/08 8

Computer Graphics & Simulation GroupComputer Graphics & Simulation Group DepartmentDepartment ofof ComputerComputer Science Science -- University of MaltaUniversity of Malta

9Java2D/Java3D Introduction

Java2D Program Structure

• Rendering is event based.

• In Java2D everything is drawn in the

paintComponent(Graphics g) method which is

invoked when repaint is called.

• Threads can be used as in the Rain example …

• Alternatively the Java2D Timer class can be used as

we’ll see in the Clock2D example …

06/06/08 9

Computer Graphics & Simulation GroupComputer Graphics & Simulation Group DepartmentDepartment ofof ComputerComputer Science Science -- University of MaltaUniversity of Malta

10Java2D/Java3D Introduction

A 2D Clock – An example

• Switch to Eclipse …

– Rain uses the Thread class

– Clock2D uses the Java2D Timer class

06/06/08 10

Computer Graphics & Simulation GroupComputer Graphics & Simulation Group DepartmentDepartment ofof ComputerComputer Science Science -- University of MaltaUniversity of Malta

11Java2D/Java3D Introduction

The 3D Rendering Process

• Unlike 2D, rendering a 3D scene is a much more
complex process.

• The 3D viewing process typically involves a projective
transformation that maps a 3D scene to a 2D plane.

• A number of elements need to be processed
including: geometries, materials, lights, shading
models, etc…

• Matrix Transformations – Rotation, scaling, shearing,
translation.

Computer Graphics & Simulation GroupComputer Graphics & Simulation Group DepartmentDepartment ofof ComputerComputer Science Science -- University of MaltaUniversity of Malta

12Java2D/Java3D Introduction

The Java3D Package

• Java3D caters for the needs described in the
previous slide.

• javax.media.j3d.*; -- Main Package

• com.sun.j3d.*; --Utility Classes

• Canvas3D

• Shape3D

• Transform3D

Computer Graphics & Simulation GroupComputer Graphics & Simulation Group DepartmentDepartment ofof ComputerComputer Science Science -- University of MaltaUniversity of Malta

13Java2D/Java3D Introduction

Primitive Geometry (i)

• The geometries of complex objects are built

from sets of simple objects (primitives) such

as triangles.

• Point* classes : geometric points

• Color* classes : color representations

• Vector* classes : geometric vectors

Computer Graphics & Simulation GroupComputer Graphics & Simulation Group DepartmentDepartment ofof ComputerComputer Science Science -- University of MaltaUniversity of Malta

14Java2D/Java3D Introduction

Primitive Geometry (ii)

• Dodecahedron

– 20 vertices and 12 pentagon faces

– First define the vertices using a Point3d[] array

– Then define the indices which compose the faces.

Size of array is equal to 12 * 5 (obviously there are

shared vertices

– Then define the stripCounts

• Int[] stripCounts = {5,5,5,5,5,5,5,5,5,5,5,5}

– Check example …

Computer Graphics & Simulation GroupComputer Graphics & Simulation Group DepartmentDepartment ofof ComputerComputer Science Science -- University of MaltaUniversity of Malta

15Java2D/Java3D Introduction

Transformations

• Javax.vecmath package contains matrix classes representing

3x3, 4x4 and general matrices.

• Transform3D class represents geometric transformations

which internally maintains a 4x4 double matrix for the

transform.

• Provides methods for translation, scaling, reflection and

rotation of the matrix. Rotation is notoriously the most

complex since a general 3D rotation has an axis of rotation

that can be any line in the virtual space.

Computer Graphics & Simulation GroupComputer Graphics & Simulation Group DepartmentDepartment ofof ComputerComputer Science Science -- University of MaltaUniversity of Malta

16Java2D/Java3D Introduction

Java 3D Scene Graphs (i)

• Used to organise the various elements in the 3D

rendering.

• A scene graph is essentially a virtual universe which

describes the relations between its different elements.

• The scene graph enables programmers to specify

complex graphics structures and actions in a uniform

manner.

• Formally, it is a tree-like structure known as

DAG(directed acyclic graph).

Computer Graphics & Simulation GroupComputer Graphics & Simulation Group DepartmentDepartment ofof ComputerComputer Science Science -- University of MaltaUniversity of Malta

17Java2D/Java3D Introduction

Java 3D Scene Graphs (ii)

• The DAG is composed of Node (classes) with NodeComponent
(classes)

– VirtualUniverse and Locale

– GroupNodes
• BranchGroup (root a a branch of a scene graph)

• SharedGroup (used to explicitly share branches)

• TransformGroup (represents geometric transformations applied to all
children)

• Etc…

– Leaf Nodes
• Behaviour

• Light

• Shape3D

• Sound

• Background

• Etc…

• NodeComponent eg. Appearance, Texture, ColoringAttributes, etc…

Computer Graphics & Simulation GroupComputer Graphics & Simulation Group DepartmentDepartment ofof ComputerComputer Science Science -- University of MaltaUniversity of Malta

18Java2D/Java3D Introduction

Java 3D Scene Graphs (view rotation)

bg

tg

sphere appearance

material

Lights

bg

tg

Rotator

Shape3D

ViewPlatform

Computer Graphics & Simulation GroupComputer Graphics & Simulation Group DepartmentDepartment ofof ComputerComputer Science Science -- University of MaltaUniversity of Malta

19Java2D/Java3D Introduction

The structure of a 3D Program

• To write a Java3D program is essentially to

assemble a scene graph!

• The scene graph is a complete specification of

all the graphics objects and their attributes. It

is also linked to the AWT components for

displaying rendered images.

Computer Graphics & Simulation GroupComputer Graphics & Simulation Group DepartmentDepartment ofof ComputerComputer Science Science -- University of MaltaUniversity of Malta

20Java2D/Java3D Introduction

Transformations in Scene Graphs

• A TransformGroup object defines a scene-graph

group node that represents a specific transformation

(Transform3D object).

• The transformation defined by the TransformGroup

node is applied to all of its child nodes.

Computer Graphics & Simulation GroupComputer Graphics & Simulation Group DepartmentDepartment ofof ComputerComputer Science Science -- University of MaltaUniversity of Malta

21Java2D/Java3D Introduction

Lighting (Classes)

• AmbientLight() – uniform in all directions and locations

• DirectionalLight() – emits parallel light rays (from infinity)

• PointLight() – has a specific location and emits light rays in all

directions.

• SpotLight() – emits light rays in a cone-shaped region.

• All can emit different colours - check example code.

Computer Graphics & Simulation GroupComputer Graphics & Simulation Group DepartmentDepartment ofof ComputerComputer Science Science -- University of MaltaUniversity of Malta

22Java2D/Java3D Introduction

Texturing

• Texture mapping is a method that utilizes images in
graphics rendering.

• It can provide a great deal of model details with
efficiency.

• Java3D includes classes (NodeComponents) to
represent textures which are applied to Shape3D
objects.

Computer Graphics & Simulation GroupComputer Graphics & Simulation Group DepartmentDepartment ofof ComputerComputer Science Science -- University of MaltaUniversity of Malta

23Java2D/Java3D Introduction

Behaviour (Abstract Class)

• Java3D provides a general unified approach to implement both

animation and interaction.

• Abstract Methods

– initialize() : invoked when a Behaviour object becomes live

– processStimulus() : invoked by Java3D under certain wakeup

conditions (WakeupCondition class hierarchy, eg.

WakeOnElapsedTime(long ms))

• void wakeupOn(WakeupCondition wakeup)

Computer Graphics & Simulation GroupComputer Graphics & Simulation Group DepartmentDepartment ofof ComputerComputer Science Science -- University of MaltaUniversity of Malta

24Java2D/Java3D Introduction

Animations in Scene Graphs

• To produce an animated effect, the rendered scene
must change dynamically with time.

• Java3D provides support for incorporation of
animation into a scene graph through the Behaviour
class.

• More specifically through a family of behaviours
known as Interpolators.

Computer Graphics & Simulation GroupComputer Graphics & Simulation Group DepartmentDepartment ofof ComputerComputer Science Science -- University of MaltaUniversity of Malta

25Java2D/Java3D Introduction

The Alpha and Interpolator classes

• An Alpha object defines a function of time that produces
values between 0.0 and 1.0.

• The Alpha objects provide inputs to the animation class
known as the Interpolator.

• A Java3D Alpha object includes the following parameters:

– LoopCount : -1 indicates an infinte number of loops

– increasingAlphaDuration : The time in milliseconds for the
alpha value to increase from 0.0 to 1.0

– etc…

Computer Graphics & Simulation GroupComputer Graphics & Simulation Group DepartmentDepartment ofof ComputerComputer Science Science -- University of MaltaUniversity of Malta

26Java2D/Java3D Introduction

Conclusions

• Levels of abstraction

• Infer ease of use – user friendliness

• But also need to be complete !!

• This was a quick introduction to Java{2|3}D.

• We’ve mentioned some of the core classes

• But … various others are included in the API

• If you are interested in Java and Graphics I would
recommend you also check JOGL.

