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Abstract. Clinical decision support software is a delicate system which, can potentially be
the physician’s closest friend. The aim of such systems is to be able to cleverly recommend
a list of treatment options which closely matches the patient. We envisage a system which
learns from experts without ever needing to ask them for feedback, and thus one which learns
from past patient encounters. The system needs to be adaptive as well as dynamic, since all
patients are different even if they may exhibit very similar symptoms. This paper proposes
using matrices to capture such data, and algorithms using Singular Value Decomposition to
predict treatments.

1 Introduction

The aim of the project is that of achieving the level of machine intelligence required for delivering
clinical decision support[6]. The traditional meaning of learning is the gaining of knowledge or
information about an area, and thus the acquiring of an understanding of the topic[7]. An un-
derstanding is the product of the learning process, and it is very often an interpretation of the
knowledge gained. As a result, in complex areas such as those found in the medical field, learning
does not lead to all experts, the physicians, to have a common understanding. An analysis of the
actions of several physicians, however, reveals trends or patterns of prescriptions to tests and med-
ications given to patients. Although this is not equivalent to an understanding of the area, which
is satisfactory to substitute the expert, such knowledge can be used as training data for clinical
decision support systems. This paper introduces techniques which use singular value decomposition
to extract this training data dynamically.

2 Basic Definitions

Observations of a working system or natural phenomenon may be described by a set of simultaneous
equations. These, in turn, may be represented in matrix notation.

In the case of a system with m simultaneous equations in n variables, we may write

Ax = b (1)

where x is an unknown solution column vector and A is an (m× n) co-efficient matrix. Thus:

x = A−1b

For a matrix A, where b = 0, the system is said to be homogenous. The solution here is apparently
x = 0, but when the detA = 0, the inverse A−1 does not exist, and thus the solution for x is
non-trivial. This is also always the case when m > n. Matrix A is then said to be singular.
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The rank of a matrix is the maximum number of linearly independent rows or columns. When
the detA = 0, the rows of A are linearly dependent and thus rank(A) < n. This is termed rank-
deficiency, and leads to the system potentially having infinitely many solutions. Solving a system
where the coefficient matrix is rank-deficient is equivalent to solving m simultaneous equations in
n unknowns where m < n, and thus traditionally considered intractable.

Let us finally consider the same system of simultaneous equations described by equation (1) when:

b = λx

λ is a scalar and its values are called eigenvalues, whilst the corresponding solutions are called
eigenvectors. Using the above substitution for b in Ax = b:

Ax = λx

(A− λI)x = 0

Therefore, the characteristic equation for systems with non-trivial solutions is:

det(A− λI) = 0 (2)

Its solution gives the eigenvalues of A and, in turn, the solutions of x.

3 Singular Value Decomposition

Most systems of simultaneous equations may be solved using algebraic manipulations involving
elementary row operations. In those cases where Gaussian Elimination or Triangular (LU) De-
composition do not succeed to give satisfactory results, we can use Singular Value Decomposition
(SVD) to diagnose and possibly solve the problem[8].

SVD techniques deal with singular matrices, or ones which are very close to being singular. They are
an extension of eigen decomposition to suit non-square matrices. Any matrix may be decomposed
into a set of characteristic eigenvector pairs called the component factors, and their associated
eigenvalues called the singular values [3].

The SVD equation for an (m× n) singular matrix A is:

A = UΣVT (3)

where U is an (m×m) orthogonal matrix, V is an (n×n) orthogonal matrix and Σ is an (m×n)
diagonal matrix containing the singular values of A arranged in descreasing order of magnitude.

A vector in an orthogonal matrix, which can be expressed as a linear combination of the other
vectors. The vectors in this space are thus, also mutually independent, and thus a solution for x
may be now calculated.

The equation for Singular Value Decomposition needs to be further explained by showing the
significance of the eigenvectors and the singular values.

Each of the orthogonal matrices is achieved by multiplying the original (m×n) data matrix A by its
transpose, once as AAT to get U, and once as ATA to get VT. The data is then available in square
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matrices, on which eigen decomposition may be applied. This involves the repeated multiplication
of a matrix by itself, forcing its strongest feature to predominate. In SVD, this is done on both
the orthogonal matrices. The pairs of eigenvectors are the rows in U and the columns in V. These
are sorted in order of their strength; the respective singular value acts as the required numerical
indicator as further explained below. [3]

Let us first explain the relationship between the singular values and the co-efficient matrix’s eigen-
values:

ATA = (UΣVT)T (UΣVT)
ATA = VΣTUTUΣVT

ATA = VΣTΣVT

ATA = VΣ2VT

Σ2 contains the eigenvalues of ATA. Similarly, it may be shown that they are also the eigenvalues
of AAT. They may be arranged in decreasing order of magnitude:

λ1 ≥ λ2 ≥ λ3 ≥ ... ≥ λn ≥ 0

Singular values of a matrix A are defined as the square root of the corresponding eigenvalues of
the matrix ATA:

σj =
√

λj

As with the eigenvalues, they are sorted according to their magnitude, and the corresponding
eigenvectors in the orthogonal matrices U and V follow the same order. The SVD equation (3)
takes the form:

A =


u11 u12 u13 . . . u1m

u21 u22 u23 . . . u2m

u31 u32 u33 . . . u3m

...
...

...
. . .

...
um1 um2 um3 . . . umm




σ11 0 0 . . . 0
0 σ22 0 . . . 0
0 0 σ33 . . . 0
...

...
...

. . .
...

0 0 0 . . . σnn




v11 v21 v31 . . . un1

v12 v22 v32 . . . un2

v13 v23 v33 . . . un3

...
...

...
. . .

...
v1n v2n v3n . . . unn



An alternative way to what was initially described, exists for defining the size of the matrices:
Um×n, Vn×n and thus Σn×n [1]. This is due to the fact that when m > n, then n rows are
sufficient to solve for x, and the main diagonal of Σ still crosses the top left (n× n) subsection of
the matrix.

Some singular values are equal or very close to zero. A singular value σj describes the importance
of uj and vj , and when its value approaches zero it indicates that these associated vectors are less
significant.

A proof that SVD can be used to decompose singular matrices may be found in Hourigan and
McIndoo’s work 1.

1 Hourigan J S, McIndoo L V. The Singular Value Decomposition.
http://online.redwoods.cc.ca.us/instruct/darnold/laproj/Fall98/JodLynn/report2.pdf
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4 Applications in Clinical Decision Support

4.1 The Dataset

The dataset being utilised for this project originates from collections of anonymous patient-encounters
from various acute care hospitals during the year 2001. The hospitals selected are all medium to
large ones and geographically sparse over a very large country. As shown in Table 1, they have
accommodated thousands of patients.

Table 1. Hospitals in Dataset

Hospital Size in no of beds Patient Encounters

A 200-399 80,000

B 200-399 55,000

C 400+ 175,000

D 400+ 90,000

For the scope of this study only inpatients who have spent at least one night in hospital are being
considered. The sex distribution is about 4 males to 6 females, and there is a very even and broad
distribution of ages.

Each patient is represented by a unique identifier that masks the person’s identity, but real demo-
graphic and medical information is available. This includes sex, age, diagnosis in ICD-9CM format,
procedure information in ICD-9CM and CPT-4 format, and hospital billing information. Since
hospital-specific codes are used to describe the latter, when patient-encounters from more than one
hospital are used, the data needs to be standardised in advance.

4.2 Use of SVD Techniques

Singular Value Decomposition is an excellent unsupervised learning tool to process source data in
order to find clusters, reduce dimensionality, and find latent variables. This means that field or
experiment data can be converted into a form which is free of noise or redundancy and that it can
be better organised to reveal hidden information.

Although a lot of work on information retrieval (IR) has been done using SVD, most of it is in the
areas of genetic patterns and semantic analysis of text and hypertext documents. Clinical decision
support software affects human lives, and thus, since SVD techniques are still being tested with
less delicate applications, no current attempts at using it to help the physician’s decision making
process are known to the author. The many current efforts to harness SVD techniques in the field
of IR have been instrumental for this project, and good examples are provided by Wall’s work
[9–11] and others such as [2, 4].

The various prescriptions (orders) received by a hypothetical number of patients exhibiting a
certain condition can be visualised in Fig. 1. The orders are however not mutually exclusive, and
no information is given regarding which orders were prescribed together to which patients. SVD is
not a straightforward statistical technique, and manages to mine such information.

In the following sections we will briefly describe the benefits of using Singular Value Decomposition
to process the source data originating from patient encounters.
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Fig. 1. Different Orders for a Particular Condition

Redundancy Reduction: The diagram in Fig. 2 shows the process of converting field data into
matrix format. The chosen rows are those of patients who fit the demography and symptom profile
chosen by the physician.

Since we are using field data, and not one specifically collected for this project, the matrix containing
the patient-encounter data contains a degree of noise and redundancy. The sorted singular values
in a Singular Value Decomposition help represent the original matrix in less rows, by pushing the
less significant rows to the bottom of the orthogonal matrices. The matrix may thus be smoothed
by eliminating those vectors whose respective singular value is equal to, or approaches zero. As
explained in section 3, these are the vectors which least impact on the original matrix.

Fig. 2. Source Data converted to Matrix-format
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Exposing Components: As already explained in Section 3, Singular Value Decomposition results
in sorted eigenvectors (components). These are very useful in analysing patient encounters and
revealing the most predominant components. These are representative of the procedures which
most significantly describe the typical patient’s treatment for the chosen patient profile.

We believe that the clusters formed when the source data is projected in the dimensions of the
first two components is indicative of their constituents. An example is seen in Fig 3.

Fig. 3. Clustering when Source Data is Projected in two Dimensions

Understanding Latent Variables: Latent variables are hidden sources in the original data;
they explain the common traits in patient encounters, but cannot be measured directly. For the
observed data represented by matrix A, in n variables, the latent variables may be expressed in l
dimensions where l << n. If we assume that the initial n variables capture the whole domain, the
product of SVD will be a set of variables which includes the latent ones. What may initially be
evident as a prescription to a set of tests and medications for particular symptoms may thus have
been due to a combination of latent variables including demography, diagnosis, or the ‘school of
thought’ of the physician or expert. [5, 4, 2]

Following SVD, this hidden information will not become transparent, but it will be captured by
the system as shown in Fig. 4. The ‘Controls’ act for the Latent variables and for every patient
where the same conditions apply, the relevant ones are toggled on. In this sense, every ‘Control’ is
a description of the effects of a set of Latent Variables, and certain medical procedures go ordered
when a control is toggled on.
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Fig. 4. Hidden sources may be represented as ‘Controls’

5 Conclusion

SVD techniques will be used to predict a patient’s treatment based on all the information known
about the patient, without having to assign static weights to a particular characteristic. This means
that the importance of age or a particular symptom, for instance, may be very significant in one
encounter and disregarded in another as the system’s decision support is based on a non-trivial
dynamic distance measure between the current patient profile and past cases.
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